

Caritasverband Freiburg-Stadt e.V.

Neubau Barrierefreies Wohnen Rheinhausen Flurstück-Nr.: 611/1

Grundwasserwärmepumpenanlage

Erläuterungsbericht zum Wasserrechtlichen Antrag

E. Funk Büro für Hydrogeologie

Rothofweg 5 79219 Staufen Tel. 07633/7270 Fax 07633/5797 funk@geohydraulik.com

www.geohydraulik.com

Antragsteller:	Freiburg, 25.08.2025
	Caritasverband Freiburg-Stadt e.V. Herrenstraße 6 79098 Freiburg
Bericht erstellt:	Staufen, 25.08.2025
	E. Funk (Dipl. Geologe) Büro für Hydrogeologie Rothofweg 5 79219 Staufen

Inhaltsverzeichnis

1.	Vorbemerkungen	4
2.	Durchgeführte Untersuchungen	4
2.1	Datenerhebung – Vorhandene Unterlagen	4
2.2	Errichtung der Brunnenanlage	5
2.3	Pumpversuche	5
2.4	,	
3.	Geologisch - Hydrogeologische Verhältnisse	
3.1	J i	
3.2	1	
3.3	3 3 3	
3.4		
3.5	•	
4.	Beschreibung der Anlage	
4.1	3 3 3	
4.2	- 1 1 3	
4.3	3	
5.	Geohydraulische Auswirkungen	
5.1	- ,	
5.2	,	
6.	Numerisches Grundwassermodell	
6.1	S .	
6.2	, ,	
6.3		
	3.3.1 Äußere Randbedingungen	
	3.3.2 Innere Randbedingungen	
	5.3.3 Durchlässigkeiten	
6.4	Š	
6.5	•	
6.6		
6.7	3	
6.7	,	
6.7		
_	5.7.2.1 Temperaturanomalien Ende Winter (Heizphase)	
	7.7.2.2 Temperaturanomalien Ende Sommer (Kühlphase)	
7.	Wasserrechtliche Situation	
7.1		
7.2		
8.	Literaturverzeichnis	29

Abbildungsverzeichnis

•	: Hydrogeologischer Querschnitt 15 (Teilgebiet Mitte) aus LGRB (2007). en: OGWL = Oberer Grundwasserleiter; UGWL = Unterer Grundwasserleiter
•	2: Grundwasserganglinie der Messstelle 0145/067-2
~	8: Entnahmebereich nach WYSSLING (Grenzstromlinien)16
	i: Vertikale Änderung des Grundwasserspiegels am Entnahmebrunnen (Q = 1,36
l/s)	17
Abbildung 4	: Vertikale Änderung des Grundwasserspiegels am Entnahmebrunnen (Q = 4,72
l/s)	
Abbildung 6	3: Modellgebiet mit Zellenraster22
Tabellenve	rzeichnis
Tabelle 1 St	tammdaten der Brunnen BV Caritas Rheinhausen
Tabelle 2: D	Oaten des Pumpversuches 08 09.10.2024 Entnahmebrunnen
	Oaten des Schluckversuches 08 09.10.2024 Schluckbrunnen
	Aquiferparameter am Standort
	Auswertung von Grundwasserständen am Bauvorhaben
	Aittel- Niedrigst- und Höchstwasserstände der GWM 0145/067-2
	Hydrochemische Ergebnisse der Probe im Ebr. Caritas
	Energiebedarf und erforderliche Brunnenleistung
	Strömungsdistanzen am Entnahmebrunnen
	Bodensetzungen am Entnahmebrunnen bei einer Förderrate von 4,72 l/s19
	Grundwasserentnahmen/Förderraten der Brunnen im Modellgebiet25
Tabelle 15:	Wasserbilanz28
Anlagenve	rzeichnis
Anlage 1:	Übersichtskarte
Anlage 2:	Lageplan
Anlage 3:	Modellgebiet, Aquiferbasis, Grundwasserhöhenlinien
Anlage 4:	Strömungsbahnen und Temperaturanomalien (Ende Sommer)
Anlage 5:	Strömungsbahnen und Temperaturanomalien (Ende Winter)
Anlage 6:	Schichtenverzeichnis und Ausbaupläne der Brunnen, Pumpversuchsdaten
Anlage 7:	Datenblätter der Unterwasserpumpe
Anlage 8:	Schema und Datenblätter der Wärmepumpenanlage
Anlage 9:	Sicherheitsdatenblatt des Kälteträgers R-290 und R-32

1. Vorbemerkungen

Im Bereich des Grundstückes Flurstücks-Nr.611/1 in Rheinhausen (Gemarkung Niederhausen) ist, im Rahmen des Neubaus für ein Wohnheim des Caritasverband Freiburg, die Installation einer Grundwasserwärmepumpenanlage mit einem Entnahme- und einem Schluckbrunnen vorgesehen. Die Wärmepumpenanlage dient zur Heizung im Winter sowie zur Klimatisierung im Sommer. Gemäß Wasserhaushaltsgesetz ist die Entnahme von Grundwasser für diesen Zweck genehmigungspflichtig und bedarf der Einleitung eines wasserrechtlichen Verfahrens.

Die Bohranzeige zur Errichtung der Brunnen wurde vom Unterzeichner mit Datum vom 26.11.2022 eingereicht. Mit der Bestätigung der Bohranzeigen durch das Landratsamt Emmendingen vom 12.05.2023 wurde die wasserrechtliche Erlaubnis zum Bau der Brunnen und zur Grundwasserentnahme im Rahmen der geplanten Pumpversuche erteilt. Die zur Förderung und Wiedereinspeisung des Grundwassers erforderlichen Brunnen wurden im September und Oktober 2024 errichtet. Mit dem vorliegenden Erläuterungsbericht werden die Antragsunterlagen gemäß Merkblatt und gemäß Leitfaden des Landes bzw. den Anforderungen des Landratsamtes (zusätzliche Modellierung des Temperaturfeldes) für die Erteilung der wasserrechtlichen Erlaubnis zum Betrieb der Brunnen eingereicht.

2. Durchgeführte Untersuchungen

2.1 Datenerhebung – Vorhandene Unterlagen

Zur Bearbeitung der nachfolgenden Fragestellungen wurden hauptsächlich die unten aufgeführten Unterlagen verwendet. Beim Landesamt für Geologie, Rohstoffe und Bergbau (Regierungspräsidium Freiburg) wurden zudem Archivdaten der im Untersuchungsgebiet vorhandenen Aufschlüsse erhoben. Vom LRA und der LUBW wurden Unterlagen über das Grundwasserstandsmessnetz und die Daten der vorhandenen Brunnen zur Verfügung gestellt. Anlagenrelevante Daten wurden vom Auftraggeber zur Verfügung gestellt. Weitere verwendete Unterlagen sind im Literaturverzeichnis in Kapitel 8 aufgeführt.

- Auszug aus der DTK25 (Datenquelle: LGL, www.lgl-bw.de)
- Lagepläne (Auszug aus dem ALK, Unterlagen des Auftraggebers)
- Schichtenverzeichnis und Ausbauplan der relevanten Brunnenbohrungen, Pumpversuchs-Daten
- Erhebung am Landratsamt Emmendingen: Schichtenverzeichnisse und Ausbaupläne der vorhandenen Brunnen, Pumpversuchsdaten, Entnahmemengen, Temperaturspreizungen

2.2 Errichtung der Brunnenanlage

Die Brunnenbauarbeiten und Pumpversuche wurden von der Firma drillexpert im September und Oktober 2024 durchgeführt. Die Lage der Brunnen und die Daten der Bohrungen sowie der Pumpversuche sind aus den Anlagen 1 – 3 und Anlage 6 ersichtlich. Der Untergrund wurde wie erwartet erbohrt. Im Bereich des Entnahmebrunnens wurde bis in ca. 0,3 m sandiger, schwach schluffiger Kies erbohrt. Beim Schluckbrunnen wurde eine ca. 2,3 m mächtige Deckschicht aus kiesig, sandigem Schluff erbohrt. Darunter wurden jeweils die quartären, sandigen Kiese (Obere Schotter = Neuenburg-Formation) bis in 11,4 m erbohrt. Die Brunnen wurden ordnungsgemäß ausgebaut und mit einem tagwasserdichten Brunnenschacht an der Oberfläche abgeschlossen. Nachfolgend werden die Stammdaten der Brunnen in Tabelle 1 aufgelistet.

Tabelle 1 Stammdaten der Brunnen BV Caritas Rheinhausen

	Entnahmebrunnen	Schluckbrunnen
Ostwert	32404617,55	32404641,36
Nordwert	5343061,77	5343104,35
Geländehöhe, GOK (m+NN)	168,80	168,90
Oberkante Brunnenkopf (m+NN)	166,96	167,51
Endteufe Bohrung/Ausbau (m u. GOK)	11,4/10,5	11,4/11,0
Bohrdurchmesser (mm)	880	880
Ausbaudurchmesser (mm)	400	300
Filter (m u. GOK)	5,0 - 9,0	5,0 – 11,0
Ruhewasserspiegel (m u. GOK)	4,7*	4,7**
Flurstücksnummer	611/1	611/1
Gemarkung	Niedernhausen	Niedernhausen

*Datum:05.09.2024; ** Datum: 11.09.2024

2.3 Pumpversuche

Nach der Errichtung der Brunnen wurden diese entsandet und klargepumpt. Zur Prüfung und zum Nachweis der Funktionstüchtigkeit der Brunnen wurde vom 08.- 09.10.2024 ein 12-stündiger Pump- bzw. Schluckversuch durchgeführt. Dabei wurde das mit einer Menge von 5 l/s geförderte Wasser aus dem Entnahmebrunnen in den Schluckbrunnen eingeleitet.

Zur kontinuierlichen, digitalen Registrierung des Wasserspiegels wurden in die Brunnen Drucksonden eingebaut. Die Fördermenge wurde mittels eines Induktivmessgerätes in der Ablaufleitung ebenfalls kontinuierlich registriert. Die ermittelten Wasserspiegeldaten sind in Anlage 6 in graphischer Form linear dargestellt. Aus Tabelle 2 und 3 sind die Rahmendaten der Versuche ersichtlich. Die erwartete relativ gute Durchlässigkeit der quartären Schotter konnte durch die Versuche bestätigt werden (siehe Kap. 3.2).

Tabelle 2: Daten des Pumpversuches 08.- 09.10.2024 Entnahmebrunnen

Phase	Datum, Uhrzeit	Dauer (Std:min)	Wassersp. (m u. ROK)	Absenkung (m)	Förderrate (I/s)
Rwsp. Messung	08.10.2024 06:10	-	3,935	-	-
Beginn PV	08.10.2024 06:13	00:03	3,935	-	5
Ende PV / Beginn WA	08.10.2024 18:13	12:00	4,790	0,855	5
Ende WA	09.10.2024 08:24	14:11	3,890	-0,045	-

Tabelle 3: Daten des Schluckversuches 08.- 09.10.2024 Schluckbrunnen

Phase	Datum, Uhrzeit	Dauer (Std:min)	Wassersp. (m u. ROK)	Erhöhung (m)	Schluckrate (I/s)
Rwsp. Messung	08.10.2024 06:10	-	4,295	-	-
Beginn PV	08.10.2024 06:13	00:03	4,295	-	5
Ende PV / Be- ginn Absenkung	08.10.2024 18:13	12:00	3,1	1,195	5
Ende Absenkung	09.10.2024 08:24	14:11	4,245	0,050	-

2.4 Hydrochemische Analysen

Am Ende des Pumpversuches wurde eine Wasserprobe für eine hydrochemischen Übersichtsanalyse entnommen. Die Probe wurde durch das IFU GmbH, Gewerbliches Institut für Fragen des Umweltschutzes, in Heitersheim, analysiert. Die Ergebnisse der veranlassten hydrochemischen Analyse sind in Kapitel 3.5 zusammengestellt.

3. Geologisch - Hydrogeologische Verhältnisse

3.1 Schichtenfolge und Aquiferbereich

Die Tiefenlage der Schichtgrenzen wurde aus den zur Verfügung gestellten Bohrprofilen bzw. Auswertungen im Rahmen der Arbeit des LGRB (2007) entnommen und kann folgendermaßen dargestellt werden (siehe Anlage 3).

Das Untersuchungsgebiet liegt im Bereich der quartären Ablagerungen des Rheintalgrabens bzw. im Bereich der Niederterrassenschotter des Rheintals. Die Kiese und Sande der Niederterrasse wurden während der letzten Eiszeit abgelagert, und im Bereich der Niederungen anschließend umgelagert. Sie werden in die liegende Breisgau-Formation und die obere Neuenburg-Formation unterschieden. Die jüngeren Kiese erreichen Mächtigkeiten von ca. 55 m und sind im Allgemeinen gut bis sehr gut durchlässig. Im Bereich der geplanten Brunnen wird die Basis der Oberen jüngeren Schotter, also des Hauptgrundwasserleiters gemäß o. g. Veröffentlichung bei ca. 115 m+NN also ca. 54 m unter Gelände angegeben.

Der obere Grundwasserleiter stellt den regional bedeutsamsten Grundwasserleiter dar. Der untere Grundwasserleiter hat in der Regel etwas geringere Durchlässigkeiten. Die Aquiferbasis wird gemäß aktueller Veröffentlichung des LGRB (Informationen Nr. 19) bei ca. 50 m +NN angegeben. Bei einem Flurabstand von 4,3 m ergibt sich demnach eine Gesamtaquifermächtigkeit von ca. 115 m. Auf der Basis der aktuellen Bohrungen und oben genannter Literatur ergibt sich im Bereich des geplanten Vorhabens folgender Schichtenaufbau:

Deckschicht (0 - ca. 0.3 m / 2.3 m)

OGWL Neuenburg-Formation (bis ca. 54 m)

Kies, sandig, steinig bis ca. 9 m (EBr.) und bis ca. 7,5 m (SBr.) sowie Sand, kiesig, steinig im unteren Bereich der Bohrungen bis ca. 11,4 m bzw. 10,7 m. In der Regel sandige bis stark sandige, gut gerundete und gut durchlässige Kiese.

UGWL Breisgau-Formation (bis ca. 119 m)

Die Breisgauschichten bestehen aus stärker sandigen Kiesen, deren Schluff- und Tongehalte deutlich höher ist als in den jüngeren Schottern. Bereichsweise sind die überwiegend kristallinen Gerölle schon deutlich zersetzt bzw. stark angewittert.

3.2 Pumpversuche - Durchlässigkeiten

Zur Bestimmung der Durchlässigkeiten wurde der am 08.- 09.10.2024 durchgeführte Pumpversuch im Entnahmebrunnen ausgewertet. Die lineare Darstellung der Messwerte ist in Anlage 6 dargestellt. Während des Versuchs stellten sich instationäre Verhältnisse ein. Zur Bestimmung der Transmissivität wurde der Versuch nach COOPER & JACOB und THEIS ausgewertet. Bei der Berechnung der Transmissivität ist berücksichtigt worden, dass es sich um ungespannte Aquifer-Verhältnisse handelt. Die Aquifermächtigkeit wurde entsprechend der dokumentierten Bohrergebnisse, d. h. des mit der Bohrung erschlossenen Bereiches berücksichtigt. In der Anlage 6 sind die Darstellungen der Auswertungen abgelegt, die Ergebnisse sind in Tabelle 4 aufgelistet.

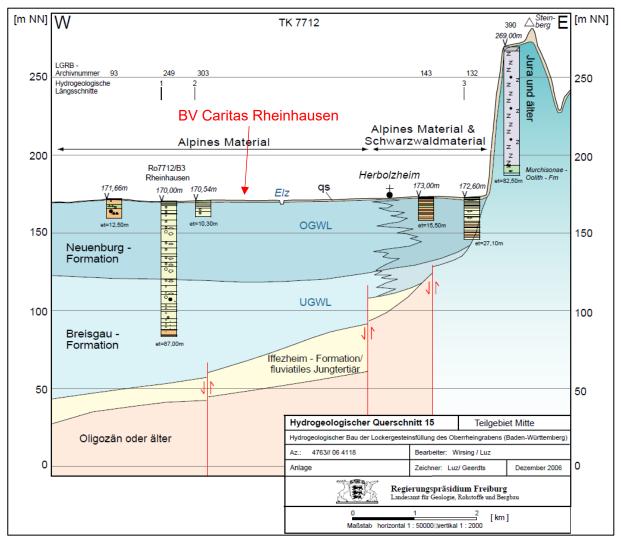


Abbildung 1 : Hydrogeologischer Querschnitt 15 (Teilgebiet Mitte) aus LGRB (2007). Abkürzungen: OGWL = Oberer Grundwasserleiter; UGWL = Unterer Grundwasserleiter

Tabelle 4: Aquiferparameter am Standort

Brunnen	Absenkung COOPER&JACOB/ THEIS 1. Ableitung Transmissivität [m²/s]	Wideranstieg THEIS/ THEIS 1. Ableitung Transmissivität [m²/s]	Aquifer- mächtigkeit [m]	Durchlässigkeit kf-Wert (mittlere) [m/s]
EBR	2,88*10 ⁻² /2,88*10 ⁻²	1,48*10 ⁻² /1,49*10 ⁻²	5	4,36*10 ⁻³

Die Auswertung des durchgeführten Pumpversuches im Entnahmebrunnen ergab eine mittlere Durchlässigkeit von 4,36 * 10 ⁻³ m/s (siehe Anlage 6). Der Durchlässigkeitsbeiwert für den oberen Grundwasserleiter, im Bereich der Brunnen, liegt damit im Bereich der regionalen

Durchlässigkeiten aus den Ergebnissen von Pumpversuchen im näheren Umfeld und der Angabe des LGRB (2007) von $4-6*10^{-3}$ m/s für den Oberen Grundwasserleiter.

3.3 Grundwasserfließrichtung – Fließgeschwindigkeit – Gefälle

Zur Veranschaulichung der lokalen Fließverhältnisse standen folgende Grundwassergleichenpläne der LUBW zur Verfügung.

- relativer Mittelwasserstand 1986
- relativer Hochwasserstand 1988
- relativer Niedrigwasserstand September 1991 (INTERREG)
- MHW, HHW und NNW aus interaktiver Kreiskarte LRA Emmendingen

Die allgemeine generelle Fließrichtung des Grundwassers folgt der Topographie der quartären Kiesschüttungen und fließt demnach in nordwestliche Richtung ab. Die mittlere Fließgeschwindigkeit vo (Abstandsgeschwindigkeit) des Grundwassers wurde nach:

$$v_0 = \frac{k_f * i_0 * 86400}{p} = m/Tag$$

mit k_f = Durchlässigkeit = 4,36 * 10⁻³ m/s (aus Kapitel 3.2) $i_{\underline{o}}$ = Gefälle des Ruhewasserspiegels = 0,001 (MW 1986) = 0,15 (angenommen)

zu v_0 = 2,51 m/Tag berechnet. In nachfolgender Tabelle 5 sind weitere Daten verschiedener Grundwasserstände und die entsprechenden Fließgeschwindigkeiten aufgelistet.

Tabelle 5: Auswertung von Grundwasserständen am Bauvorhaben

Situation	Wasserspiegel	Flurabstand	Gefälle	VO**
	(m+NN)	(m u. GOK*)		(m/Tag)
MW 1986	164,45	4,35	0,0010	2,5
HW 1988	164,60	4,20	0,0009	2,25
NW 1991	164,30	4,50	0,0015	3,75
HHW EM	165,63	3,17	-	-
MHW EM	165,08	3,72	-	-
NNW EM	162,88	5,92	-	-

^{*}GOK = 168,8 m+NN ** Abstandsgeschwindigkeit

In Tabelle 6 sowie in Abbildung 2 ist die Grundwasserganglinie der Grundwassermessstelle 0145/067-2 östlich des Bauvorhabens dargestellt (Lage siehe Anlage 1). Der Schwankungsbereich des Grundwasserspiegels kann anhand der Daten mit ca. 2,17 m angegeben werden.

Tabelle 6: Mittel- Niedrigst- und Höchstwasserstände der GWM 0145/067-2

Stammdaten	Dim.	GWM 0145/067-2
MW*	m+NN	164,42
HW**	m+NN	165,96
NW**	m+NN	163,79
HW-NW	m	2,17
Messreihe		2004 - 2024

^{*}MW = Rechnerischer Mittelwert der gesamten Messreihe;

3.4 Grundwassereinzugsgebiet, -neubildung -Wasserschutzgebiete

Das sich nach Südsüdost erstreckende oberstromige Einzugsgebiet der Brunnenanlage ist durch landwirtschaftlich genutzte Flächen sowie durch das Siedlungsgebiet von Rheinhausen geprägt. Die Grundwasserneubildung aus Niederschlag im oberstromigen Einzugsgebiet wird gemäß dem Bodenwasserhaushaltsmodell GWN-BW (LUBW) mit etwa 63 - 195 mm/a angegeben. Die Brunnen befinden sich ca. 500 m nordwestlich der Wasserschutzgebietszone IIIA des WSG Rheinhausen (siehe Anlage 1).

^{**}HW, NW = höchster/niedrigster Wasserstand; HW-NW = Schwankungsbereich;

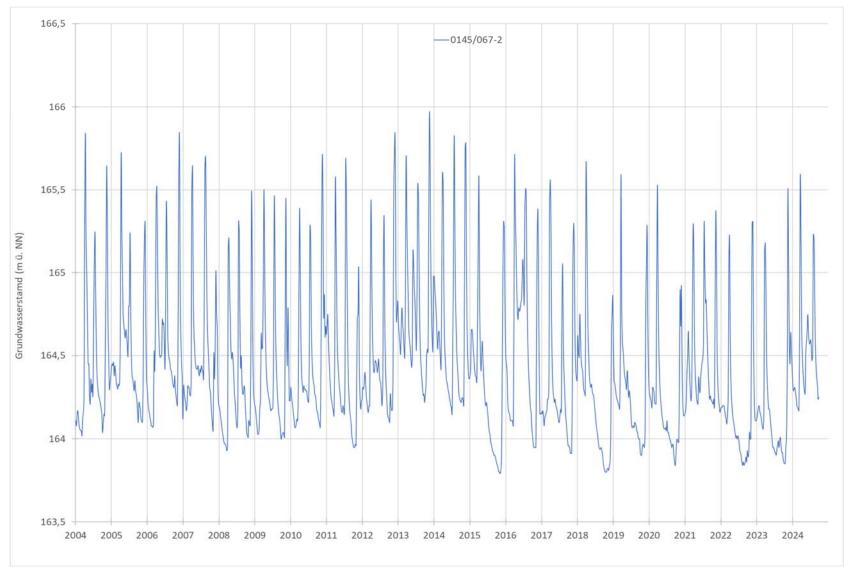


Abbildung 2: Grundwasserganglinie der Messstelle 0145/067-2

3.5 Hydrochemie

Am Ende des Pumpversuchs wurden im Entnahmebrunnen Caritas Proben für eine hydrochemische Analyse entnommen. Die Ergebnisse sind in Tabelle 7 zusammengestellt. Die Analyseergebnisse zeigen, dass keine hydrochemischen Parameter auffällig sind, die einen störungsfreien Betrieb z.B. einer Grundwasserkühl- bzw. -wärmepumpenanlage (Verschlammung des Verdampfers) und der Brunnenanlage (Verockerung des Schluckbrunnens) beeinträchtigen könnten. Da das Grundwasser keiner chemischen Veränderung oder qualitativen Nutzung unterzogen wird, sind außer der Veränderung der Temperatur keine negativen Auswirkungen auf das abstromige Grundwasser aufgrund der Einleitung durch den Schluckbrunnen zu erwarten.

Tabelle 7: Hydrochemische Ergebnisse der Probe im Ebr. Caritas

Parameter	Dimension	Ergebnis
Farbe		farblos
Trübung		klar
elektrische Leitfähigkeit (25 °C, La-	μS/cm	665
bormessung)		
pH-Wert (Labormessung)		7,4
Sauerstoffgehalt (Labormessung)	mg/l	8,8
abfiltrierbare Stoffe	mg/l	< 1,0
Eisen	mg/l	< 0,02
Eisen, gelöst (filtriert)	mg/l	< 0,02
Mangan	mg/l	< 0,005
Mangan, gelöst (filtriert)	mg/l	< 0,005
Silicium	mg/l	5,8
Natrium	mg/l	11
Kalium	mg/l	1,7
Magnesium	mg/l	12
Calcium	mg/l	110
Chlorid	mg/l	27
Nitrat	mg/l	32
Sulfat	mg/l	39
Säurekapazität bis pH 4,3 (m-Wert)	mmol/l	5,0
Basekapazität bis pH 8,2 (p-Wert)	mmol/l	0,52
Sulfid	mg/l	< 0,10
Ammonium	mg/l	< 0,01
Nitrit	mg/l	< 0,01
aggressive Kohlensäure	mg/l	0,0
freie gelöste Kohlensäure (als CO2)	mg/l	23,0
Gesamthärte (°dH)	°dH	18,3
Carbonathärte	°dH	14,1

4. Beschreibung der Anlage

4.1 Kühlung und Heizung - Energiebedarf und Grundwasserentnahmen

Das neue Gebäude des Caritasverbandes in Rheinhausen soll mit Hilfe einer Grundwasserwärmepumpe beheizt und eines Kältesystems klimatisiert werden. Für die Grundwasserentnahme wurden ein Grundwasserentnahmebrunnen sowie ein Schluckbrunnen zur Grundwasserrückführung errichtet (siehe Anlage 2 und Anlage 6). In dem Entnahmebrunnen wurde eine Förderpumpe installiert, welche das Grundwasser über ein Druckrohrleitungssystem zu den Wärmetauschern leitet.

Während der Brunnenbetriebszeit ist eine maximale stündliche Entnahmemenge von ca. 17,0 m³/h für die Heizung und 10,8 m³/h für die Kühlung vorgesehen. Es kann von einer mittleren Grundwassertemperatur von ca. 12,0 °C ausgegangen werden. Die Temperaturdifferenz Delta T soll im Heiz- und Kühlfall 5,0 Kelvin betragen (siehe auch Tabelle 8).

	y			J	
Bedarf in		Betriebszeiten Pumpleistung		Jahresförder-	Delta T
	kW*	max. (h)	(m³/h / l/s)	menge (m³)	(K)
Heizung	90	2.700	max. 17,0 / 4,72	41.850	5,0
Kühlung	63	100	max. 10,8 / 3,0	1.080	5,0
Summe	_	_	_	42 930	_

Tabelle 8: Energiebedarf und erforderliche Brunnenleistung

4.2 Grundwasserwärmepumpenanlage

Vom zuständigen Büro für die technische Gebäudeausrüstung, der Krebser und Freyler Planungs GmbH, wurde die nachfolgende Funktionsbeschreibung der Grundwasserwärmepumpen- und -kühlanlage übermittelt:

Wärmeerzeugung

Zur Wärme- und Kälteerzeugung sind zwei Grundwasser-Wärmepumpe vorgesehen. Die Heizungsverteilung sowie die Pufferspeicher der Anlagen befinden sich im Technikraum EG. Die Wärmeverteilung besteht aus folgenden Regelgruppen:

- Raumheizung Fußbodenheizung
- Warmwassererzeugung (mit Booster Wärmepumpe)
- Erhitzer Lüftungsgeräte

^{*} Angaben gemäß Planungsbüro Krebser & Freyler

Die Heizungsgruppen sind grundsätzlich als witterungsgeführte, geschlossene Pumpen-Warm-Wasserheizung im 2-Rohrsystem mit variabler Wassermenge und drehzahlgeregelter Pumpe aufgebaut. Es wird eine Regelgruppe für die Fußbodenheizung geplant und eine Regelgruppe für die Lufterhitzer der Lüftungsgeräte.

Die Beheizung der Wohn- und Pflegeräume erfolgt über Fußbodenheizung. Die Regelung der Raumtemperaturen erfolgt über Raumtemperaturfühler und Stellventile an den Fußbodenheizungsverteilern. Zusätzlich werden Fensterkontaktschalter für die Verriegelung der Heizkreise bei geöffnetem Fenster vorgesehen. Die Warmwassererzeugung erfolgt mit einer separaten Wärmepumpe.

Ein schematisches Funktionsprinzip und Datenblätter der Anlagenkomponenten finden sich in Anlage 8. Zur Systemtrennung zwischen dem Brunnenwasser und dem Heizungs- / Kältesystem werden Trennwärmetauscher verwendet. Dazu wurden im Technikraum im Untergeschoss zwei parallel geschaltete Plattenwärmetauscher installiert (Daten Wärmetauscher siehe Anlage 8).

Die Wärmepumpen werden mit dem Kältemittel R290 bzw. R32 betrieben (s. a. Anlage 9, Sicherheitsdatenblätter). Die Aggregate sind ebenfalls mit einem Druckwächter ausgestattet, der den Druck des Sekundärkreislaufs (Kältemittelkreislauf) überwacht. Bei einem Druckabfall wird die Unterwasserpumpe sofort abgeschaltet. Die Daten der verwendeten Wärmepumpe sind in Tabelle 9 aufgelistet. Die Regelung der Brunnenanlage sowie der zugehörige Wärmetauscheranlage im Technikraum erfolgt über eine MSR-Technik. Zur Sicherstellung einer energieeffizienten Betriebsweise erfolgt eine zentrale, kontinuierliche Erfassung der Betriebsdaten (Wasserstand, Temperatur, Förderrate).

Kältetechnische Anlagen

Die benötigte Kühlenergie für die Lüftungsgeräte und Raumkühlung wird über einen Plattenwärmetauscher aus dem Grundwasser gewonnen. Ein zusätzlicher Einsatz der Grundwasserwärmepumpe ist nicht vorgesehen. Im Lüftungsgerät ist zur Konditionierung der Außenluft ein umschaltbares Heiz-/Kühlregister vorgesehen. Die Verteilung der Kälte erfolgt über die Heizungsleitungen zu den Fußbodenheizungsverteilern. Die Raumkühlung des EDV-Raumes im EG erfolgt über ein Umluftkühlgerät, welches an der Decke montiert wird.

Tabelle 9: Daten Wärmepumpe

Wärmepumpe		SIGMA Sky OH R7 8.2	SIGMA Zero Hi OH 45
Betriebsweise		Heizbetrieb	Warmwasserbereitung
Kältemittel		R32	R290
Heizleistung	kW	91,3	40,0
COP		4,76	4,1
Leistungsaufnahme Gerät	kW	19,2	9,75
Volumenstrom mittel. Grundwass	er m³/h	21,5	3,75

4.3 Brunnenanlage

In Anlage 2 sind die Standorte des Entnahme- und des Schluckbrunnens sowie die entsprechenden Leitungen eingetragen. Die Maße der Zu- und Ableitungen beträgt DN 100. Der verwendete Werkstoff ist PE. Die Schichtenverzeichnisse und der Ausbau der Brunnen sind in Anlage 6 enthalten. Ebenfalls in Anlage 6 enthalten sind die Daten des durchgeführten Pumpversuchs. Die Daten belegen, dass die Förderung und Rückversickerung der angestrebten Mengen möglich sind. Für den Primärvolumenstrom zu den Wärmetauschern ist folgende Unterwasserpumpe in dem Entnahmebrunnen installiert worden (siehe Anlage 7).

KSB - UPA 150C Motor KSB 100 Nennförderstrom = 17 cbm/h = 4,72 l/s bei 20 m Förderhöhe 2,2 KW, 400 V, 50 Hz

Unterwasserpumpe vollständig aus Edelstahl und Rückschlagventil Motorschutzschalter, Steigleitung Edelstahl DN 80

5. Geohydraulische Auswirkungen

5.1 Geohydraulische Auswirkungen der Entnahme und Einleitung

Zur Berechnung der Strömungsdistanzen und Temperaturanomalien im Bereich der Brunnen werden folgende mittlere hydraulische Parameter verwendet:

Mächtigkeit H (m) = 4,65 m (vom Brunnen erschlossener Bereich bei MW-

Verhältnissen)

kf-Wert (m/s) = $4,4*10^{-3}$

Ruhegefälle i_0 = 0,001 (mittleres Gefälle) nutzbare Porosität p = 0,15 (angenommen)

Fördermenge Q max. = $4,72 \text{ l/s} = 17,0 \text{ m}^3/\text{h}$ (maximale Pumpleistung)

Fördermenge Q mittel = $1,36 \text{ l/s} = 4,9 \text{ m}^3/\text{h}$ (Jahresmittel)

Zur rechnerischen Ermittlung der Strömungsdistanzen bei Mittelwasserverhältnissen wurden o. g. Werte nach Wyssling, bzw. Todt (siehe auch Geologisches Jahrbuch, Reihe C, Heft 36, Hannover 1984; s.a. Abbildung 3) ausgewertet. Das Verfahren geht von einem idealen homogenen Porengrundwasserleiter aus, sodass die Ergebnisse nicht vorbehaltlos auf die natürlichen Verhältnisse übertragbar sind. Bei der Berechnung der Entnahmebreiten wirkt sich die Aquifermächtigkeit linear aus. In Tabelle 10 sind die Ergebnisse für die maximale Pumpmenge (Abbildung 5) und für die mittlere Pumpmenge (Abbildung 4) wiedergegeben.

Tabelle 10: Strömungsdistanzen am Entnahmebrunnen

	Q (I/s)	Entnahmebreiten (m)			Reichweite
		oberstromig (B)	stromseitlich (b)	unterstromig (xo)	R (m)
EntBr.	4,72	230,7	115,3	36,7	33,8
EntBr.	1,36	66,5	33,2	10,6	7,96

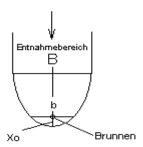


Abbildung 3: Entnahmebereich nach WYSSLING (Grenzstromlinien)

Reichweite der Grundwasserabsenkung

Zur Ermittlung des Betrages der Grundwasserabsenkung im Bereich des Absenktrichters der sich im Betrieb befindenden Brunnen, wurden die Berechnungen nach DUPUIT/THIEM und SICHARDT unter Berücksichtigung der maximalen und der mittleren Pumpmenge durchgeführt. Die aquiferspezifische Absenkung bei der maximalen Förderrate von 4,72 l/s liegt am Entnahmebrunnen bei ca. 0,17 m. Abbildung 5 zeigt, dass die Veränderung des Wasserspiegels bei der maximalen Förderrate in ca. 26 m Entfernung bereits unter 0,01 m liegt. Die Abbildung 4 zeigt, dass die Veränderung des Wasserspiegels bei mittlerer Pumprate in etwa 3 m Entfernung bei unter 0,01 m liegt.

Der Wasserstand bei Mittelwasserverhältnissen liegt bei 164,45 m+NN im Bereich der Brunnen. Bei Niedrig- und Hochwasserverhältnissen ist im Bereich der Brunnen gemäß dem in Kapitel 3.3 bzw. in Tabelle 5 aufgeführten Schwankungsbereichs mit einem ca. 1,55 m höherem bzw. 0,65 m niedrigerem Wasserstand zu rechnen. Mit den in Tabelle 4 aufgelisteten Parametern und einer Aquifermächtigkeit von 4,0 m für Niedrigwasserverhältnisse und 6,2 m für Hochwasserverhältnisse, ergibt sich für den Bereich der Brunnen bei maximalen Betrieb, rechnerisch ein minimaler Wasserstand bei Niedrigwasserverhältnissen von 164,28 m+NN im Entnahmebrunnen (Absenkung ca. 0,17 m) und bei Hochwasserverhältnissen von 165,10 m+NN im Schluckbrunnen (Aufhöhung ca. 0,65 m).

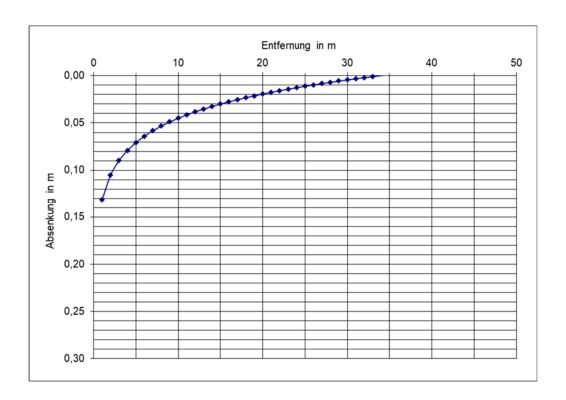


Abbildung 5: Vertikale Änderung des Grundwasserspiegels am Entnahmebrunnen (Q = 4,72 l/s)

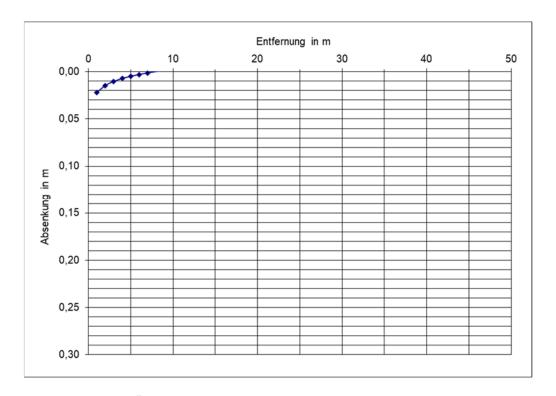


Abbildung 4: Vertikale Änderung des Grundwasserspiegels am Entnahmebrunnen (Q = 1,36 l/s)

Reichweite der Aufhöhung

Die Reichweite der Aufhöhung kann in Anlehnung an Sichardt nach

$$R = 3000 * z * \sqrt{k_s}$$

mit

z (m) = Aufstauhöhe im Schluckbrunnen

k_s (m/s) = Durchlässigkeit Versickerung (kf/4)

berechnet werden. Gemäß Pumpversuch beträgt die Aufhöhung bei einer Schluckmenge von 4,8 l/s etwa 0,65 m. Bei dieser Aufhöhung im Schluckbrunnen würde die Reichweite der Aufhöhung maximal 61,7 m betragen. Die nächsten Gebäude Dritter befinden sich etwa 35 – 41 m vom Schluckbrunnen entfernt. Da die Form des Aufhöhungstrichters einer Hyperbel entspricht und somit mit zunehmender Entfernung zu den Brunnen stark abflacht, ist die Aufhöhung im Nahbereich der Schluckbrunnen am größten. Im Bereich der Gebäude ist die Aufhöhung bereits deutlich reduziert und befindet sich innerhalb des natürlichen Schwankungsbereichs des Grundwassers. Daher sind keine Auswirkungen auf die Gebäude zu erwarten, wie zum Beispiel Vernässungen von Kellergeschossen etc.

5.2 Geohydraulische Auswirkungen – Bodensetzungen

Wenn das Grundwasser abgesenkt wird, fallen Bodenschichten trocken, verlieren dadurch den Auftrieb durch das Wasser und der Boden wird stärker zusammengepresst. Technisch gesprochen vergrößert die Grundwasserspiegelabsenkung den auftriebsfreien Bereich des Bodens und erhöht die setzungsverursachenden effektiven Spannungen im Korngerüst unterhalb des ursprünglichen Grundwasserspiegels. Es kann sich je nach Bodenbeschaffenheit eine Setzung einstellen, deren Ausprägung auch kleinräumig unterschiedlich sein kann.

In der Umgebung des Förderbrunnens bzw. innerhalb des relevanten Absenkungsbereichs, der für die maximale Förderrate von 4,72 l/s errechnet wurde, liegen 4 benachbarte Gebäude Dritter. Diese Gebäude befinden sich etwa 14 bzw. 46 m Entfernung vom Entnahmebrunnen.

Gemäß den unten aufgeführten Ergebnissen der Setzungsberechnungen nach CHRISTOW (siehe Tabelle 11) beträgt die zu erwartende effektive Bodensetzung in 5 m Entfernung vom Entnahmebrunnen ca. 0,125 mm. Für Bereiche in 10 m Entfernung geht die berechnete Setzung auf ca. 0,063 mm zurück. Aufgrund der relativ dichten Lagerung der im Untergrund anstehenden Kiese (Steifemodul Kies Es = 80 MN/m²) sind die hydraulisch bedingten Setzungen in diesem Bereich theoretisch daher in der Größenordnung von deutlich kleiner als 1 mm zu erwarten.

Tabelle 11: Bodensetzungen am Entnahmebrunnen bei einer Förderrate von 4,72 l/s

	Entfernung Brunnen (m)	Grundwasser- absenkung (m)	Spezifische Setzung (cm)	Effektive Setzung (mm)
	5	0,07	0,10	0,125
I	10	0,04	0,05	0,063

Auf der Basis der im vorliegenden Bericht angenommenen Untergrundparameter und des durch den Betrieb des Brunnen verursachten Absenktrichters kann aufgrund der vorliegenden Berechnungsergebnisse eine schadhafte Veränderung der bestehenden Bauwerke als äußerst unwahrscheinlich eingestuft werden. Die Bewertung stützt sich auf der Annahme, dass die betroffenen Gebäude auf dem vorhandenen natürlichen Untergrund aufgebaut worden sind.

6. Numerisches Grundwassermodell

Zur Berechnung und Darstellung der geohydraulischen Auswirkungen der Entnahmen und Einleitungen von Grundwasser, sowie zur Berechnung der Temperaturanomalien im Abstrom der Schluckbrunnen wurde ein numerisches Grundwasserströmungsmodell erstellt. Zur Lösung der Grundwasserströmungsgleichung wurde das international eingesetzte und frei zugängliche Softwarepaket MODFLOW des United States Geological Survey (USGS) verwendet (Finite-Differenzen Modell). Bei der Bearbeitung des Grundwassermodells wurde die grafische Benutzeroberfläche VISUAL-MODFLOW-Flex eingesetzt. Für die Vorbereitung der Eingabeparametersätze und die Auswertung der Modellergebnisse wurde ArcMap von Environmental Systems Research Institute Inc. (ESRI) verwendet.

In der Dateneingabe werden die Aquifergeometrie, die Durchlässigkeit und die Randbedingungen (unterirdische Zu- und Abflüsse, Infiltration aus Niederschlägen oder Gewässern, bzw. Abflüsse, Randzuflüsse) berücksichtigt. Zudem können in beliebiger Zahl Grundwasserentnahmen oder -anreicherungen eingerichtet werden, und (Wärme-)Transportprozesse simuliert werden.

Die Berechnung der Ausdehnung der Temperaturfelder durch die Grundwasserwärmepumpenanlage erfolgte ebenfalls mit der o. g. Software VISUAL-MODFLOW-Flex und dem Stofftransport Modul MT3DMS. Das Modul MT3DMS ist ein 3D-Transportmodell zur Modellierung der Advektion, Dispersion und chemischen Reaktionen von Stofftransporten im porösen Medium. Da die mathematischen Gleichungen für den Stofftransport und Wärmetransport identisch sind, kann mit dieser Software auch der Wärmetransport in Analogie zum Stofftransport im Grundwasser im gesättigten Aquifer berechnet werden (Hecht-Mendez et al., 2010). So entspricht die Massenkonzentration im Grundwasser der Grundwassertemperatur, die Diffusion entspricht der Wärmeleitfähigkeit und die Sorption entspricht der Wärmespeicherung

des Grundwasserleiters. Sowohl die Grundwasserströmung (Konvektion) als auch die Dispersion werden bei der Simulation entsprechend berücksichtigt.

6.1 Lage des Modells – Zellenraster

Um störende Randeinflüsse zu vermeiden, wurde das Gebiet der Grundwassermodellierung auf einen ausreichend großen Bereich um die relevanten Brunnen angelegt. Das Modellgebiet hat eine Länge von ca. 1,5 km und besitzt eine Breite von maximal 0,685 km (siehe hierzu Abbildung 6 und Anlage 1 und 3). Das Gebiet wurde zunächst in ein regelmäßiges Raster mit einheitlichen Zellen von 50 m Seitenlänge diskretisiert. Im Laufe der Generierung des Modells wurden vor allem im Bereich der Brunnen weitere Verkleinerungen der Zellen vorgenommen, um die Ergebnisse präziser darstellen zu können. Anlage 1 und 3 zeigen das Modellgebiet, in Abbildung 6 ist das verwendete Zellenraster zu sehen.

6.2 Aquifergeometrie - Layereinteilung

Der Aufbau des Untergrundes und damit die vertikale Gliederung des Grundwassermodells wurden in Kapitel 3.1 bereits erläutert. Sie orientiert sich im Wesentlichen an den Bohrprofilen der errichteten Entnahme- und Schluckbrunnen sowie der einschlägigen Literatur (LGRB 2007).

Im vorliegenden Modell wird der Kiesaquifer der Neuenburg-Formation (= OGWL= Oberer Grundwasserleiter) und der Breisgau-Formation (= UGWL = Unterer Grundwasserleiter) abgebildet. Die mittlere Mächtigkeit der Neuenburg-Formation liegt bei ca. 50 m, die Mächtigkeit der Breisgau-Formation schwankt entsprechend des Verlaufs der Quartärbasis. Aus dem Datensatz der LGRB Informationen Nr. 19 und den darin enthaltenen hydrogeologischen Profilschnitten konnte die jeweilige Aquiferbasis übernommen werden (Anlage 3).

Die Unterkante der schlechter durchlässigen Schichten der Breisgau-Formation, bildet im vorliegenden Modell die Basis des quartären Aquifers. Um die Temperaturfeldausbreitung im Tiefenbereich der im Modellgebiet relevanten Schluckbrunnen hinreichend differenziert zu betrachten, wurde auf Höhe der Sohle der Brunnen ein weiterer Layer eingefügt, die den oberen Grundwasserleiter bei 11,5 m und bei 16,0 m weiter unterteilen. Das Modell wurde dementsprechend als Vierschichtmodell aufgebaut. Die Anlagen 1 und 3 zeigen den Erstreckungsbereich des Modellgebietes.

6.3 Modellränder

6.3.1 Äußere Randbedingungen

Als äußere Randbedingungen werden die Grundwasserneubildungsraten (Versickerung aus Niederschlag und Verdunstung in der obersten Modellschicht) und Festpotentiale bzw. Randzuströme an den Außenrändern berücksichtigt.

Grundwasserneubildung

Die mittlere Grundwasserneubildung die über den versickernden Anteil aus dem Niederschlag gebildet wird, kann gemäß dem Bodenwasserhaushaltsmodell GWN-BW (LUBW) mit ca. 63 - 195 mm/a angegeben werden. Für das Modellgebiet wurden entsprechend der Datengrundlage des GWN-BW Grundwasserneubildungszonen definiert und über die MODFLOW –Eingaberoutine "RECHARGE" entsprechend ins Modell eingelesen.

Festpotential-Ränder ("constant-head-boundary")

Die geohydraulischen Verhältnisse im Bereich der quartären Kiese wurden bereits in den vorherigen Kapiteln diskutiert. Die Anlage 3 zeigt einen relativen Mittelwasserstand aus dem Jahr 1986, der für den Bereich des Modells als repräsentativ angesehen wird und daher zur stationären Kalibrierung des Models verwendet wurde. Das Modellgebiet wird daher im Nordwesten und Südosten über Festpotentiale analog zum verwendeten Grundwassergleichenplan definiert. Die Grundwasserstände an diesen Rändern werden im Grundwassermodell als Festpotential-Randbedingung (in MODFLOW als "constant-head-boundary" beschrieben) für den Zustrom am Südostrand und Abstrom am Nordwestrand des Modells festgelegt (lila eingefärbte Zellen in Abbildung 6).

Das numerische Grundwassermodell berechnet dann an den zwei Festpotential-Rändern die erforderlichen Rand-Zu- und Rand-Abflüsse, um das vorgegebene Grundwasserpotential zu erreichen. Der Nachteil von Festpotentialen liegt in der Unveränderbarkeit des Grundwasserpotentials entlang dieser Bedingung. Eine Simulation von Grundwasserentnahmen, deren Einflussbereich bis an einen solchen Rand reicht, führt zu einem scheinbar höheren Zufluss. Auch sind die Zu- und Abflüsse und die Grundwasserhöhe durch Festpotentiale vorgegeben. Die im vorgesehenen Modell festgelegten Ränder berücksichtigen einen ausreichenden Abstand in Bezug auf den untersuchten Bereich.

Null-Ränder ("flow-noflow-boundary")

Die seitlichen Ränder des Modellgebietes, werden als so genannter "Null-Rand" (in MOD-FLOW "flow-noflow-boundary") definiert. Damit rechnet das Modell hier mit strömungs- bzw. randparallelem Fließgeschehen ohne Zu- oder Abfluss (Grenzstromlinie). Um die Einflüsse der Randbedingungen so gering wie möglich zu halten, müssen die Modellränder ausreichend weit entfernt zu den relevanten Brunnenanlagen gelegt werden (blau eingefärbte Zellen in Abbildung 6).

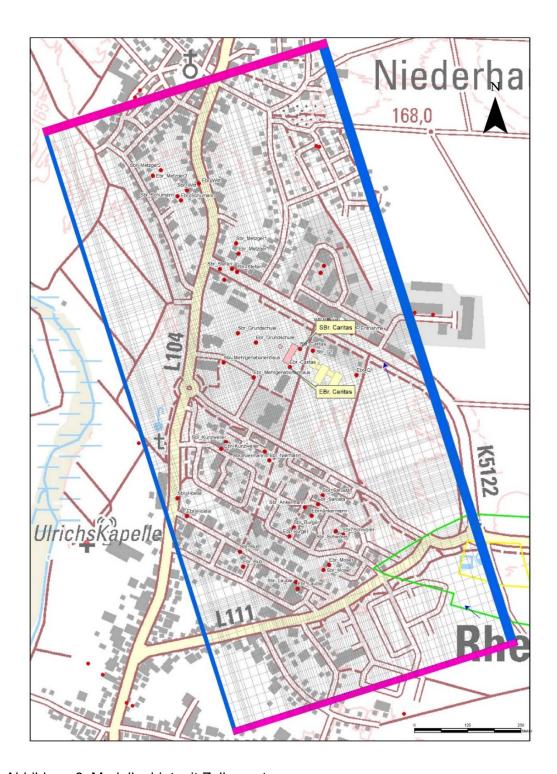


Abbildung 6: Modellgebiet mit Zellenraster

6.3.2 Innere Randbedingungen

Als innere Randbedingungen werden die Interaktionen zwischen Grundwasser und Oberflächengewässern sowie die Wasserentnahmen und -versickerungen an Brunnen im Modellgebiet berücksichtigt. Die Entnahmebrunnen stellen dabei so genannte hydraulische "Senken" dar, die Versickerungsbrunnen fungieren als hydraulische "Quellen".

Brunnenanlagen

Im Modellgebiet werden die in Tabelle 12 aufgeführten Brunnenanlagen zur Entnahme von Grundwasser bzw. Grundwasserwärmepumpenanlagen verwendet.

Oberflächengewässer

Für das vorliegende Modell wurden keine Oberflächengewässer berücksichtigt, da keine relevanten hydraulischen Auswirkungen auf das Grundwasserfließgeschehen für den Bereich der Tiefbrunnen zu erwarten sind.

6.3.3 Durchlässigkeiten

Für jede Modellschicht wurden kf-Werte für die isotrop angenommene horizontale Durchlässigkeit in das Grundwassermodell geladen, die im Rahmen der Kalibrierung variiert und angepasst werden. Bezüglich der vertikalen Durchlässigkeit wird eine Anisotropie von 1:10 angenommen, d. h. auf Grund der Bodenstruktur im Untergrund ist die vertikale Durchlässigkeit zehnmal kleiner als die horizontale. Entsprechend erhält man auf das gesamte Grundwassersystem bezogen das resultierende Anisotropieverhältnis. Ein Wert von 10 liegt hier vermutlich im oberen Bereich, kann aber aufgrund der Ablagerungsbedingungen mit hoher Strömungsenergie und dadurch bedingten verstärkt horizontalen Einregelung der Komponenten vertreten werden.

Die im Untersuchungsgebiet vorhandenen Durchlässigkeiten wurden bereits weiter oben diskutiert. Als repräsentativ für das Modellgebiet wurden neben den Ergebnissen aus den Pumpversuchen in den neuen Brunnen die Angeben des LGRB (2007) herangezogen. Die Durchlässigkeit der Neuenburg Formation liegt demnach im Modellgebiet zwischen 4 * 10⁻³ und 6 * 10⁻³ m/s. Im Bereich der Brunnen Caritas wurde entsprechend der Pumpversuche eine Durchlässigkeit von 4 * 10⁻³ m/s festgelegt. Für die unterlagernde Breisgau-Formation wurde gemäß LGRB (2007) ein einheitlicher Durchlässigkeitsbeiwert von 6 * 10⁻³ m/s verwendet. Dem gut durchlässigen Schotterkörper wurde gemäß der im Untergrund lagernden kiesigen Sande bis sandigen Kiese ein einheitlicher mittlerer Speicherkoeffizient von 0,15 zugrunde gelegt.

6.4 Kalibrierung des Modells für Mittelwasserverhältnisse

Um das Model für den stationären Zustand zu kalibrieren, wurde der o.g. Grundwassergleichenplan für Mittelwasser (1986) zugrunde gelegt. Nach Eingabe der oben erläuterten Daten wurden erste Rechenläufe durchgeführt. Als Güte für die Modellanpassung müssen folgende Aspekte berücksichtigt werden:

- die programminterne Bilanzrechnung und deren Fehlergröße,
- die Übereinstimmung der berechneten mit der gemessenen Grundwasserpotentialverteilung

Nach weiteren Rechenläufen, in denen die Parameter leicht modifiziert wurde, ergab der Abgleich der berechneten und der gemessenen Potentiale des Grundwasserspiegels eine relativ gute Übereinstimmung.

6.5 Instationärer Wärmetransport

Die Berechnung des Wärmetransports erfolgt instationär um die Veränderung der Grundwassertemperatur zeitlich differenziert darstellen zu können. Bei einer instationären Wärmetransportberechnung lassen sich zeitlich variierende Nutzungen integrieren und es kann sowohl die winterliche Heizung sowie die sommerliche Kühlung mit unterschiedlichen Fördermengen und Temperaturdifferenzen berücksichtigt werden. Um eine hinreichend differenzierte Betrachtung zu ermöglichen, wurden 4 sich jährlich wiederholende Nutzungsintervalle definiert. Die Heizphase wurde dabei mit 6 Monaten und die Kühlphase mit 4 Monaten festgelegt. Zwischen Heiz- und Kühlphase wurden jeweils Zwischenphasen definiert in welchen von keiner geothermischen Nutzung auszugehen ist. Die entsprechenden jährlichen Nutzungsphasen werden wie folgt definiert:

```
15.10. – 15.04. Heizphase 6 Monate
15.04. – 15.05. Zwischenphase 1 Monat (ohne Nutzung)
15.05. – 15.09. Kühlphase 4 Monate
15.09. – 15.10. Zwischenphase 1 Monat (ohne Nutzung)
```

Die vom Gebäudeplaner zur Verfügung gestellten Bedarfsmengen wurden ausgewertet und in das Modell integriert. Für die natürliche Grundwassertemperatur wurde ein Mittelwert von 12 °C angesetzt und im Modell entsprechend integriert.

Tabelle 12: Grundwasserentnahmen/Förderraten der Brunnen im Modellgebiet

Brunnen	Delta T Kelvin	Heizung Winter (m³/a)	Kühlung Sommer (m³/a)	Winter* 182 d (I/s)	Sommer* 123 d (I/s)
EBr. Caritas	-	-41.850	-1.080	-2,66	-0,1
SBr. Caritas	5	+41.850	+1.080	+2,66	+0,1
EBr. Q1	-	-70.000	-49.000	-4,45	-4,61
SBr. Q1	4	+70.000	+49.000	+4,45	+4,61
Ebr. Mehrgenhaus	-	-64.000	-	-4,07	-
Sbr. Mehrgenhaus	4	+64.000	-	+4,07	-
Ebr. Grundschule	-	-44.000	-51.000	-2,80	-4,80
Sbr. Grundschule	3,5	+44.000	+51.000	+2,80	+4,80
Ebr. Stefan	-	-12.000	-	-0,76	-
Sbr. Stefan	4	+12.000	-	+0,76	-
Ebr. Metzger1	-	-10.080	-	-0,64	-
Sbr. Metzger1	5	+10.080	-	+0,64	-
Ebr. Metzger2	-	-7.500	-	-0,48	-
Sbr. Metzger2	4	+7.500	-	+0,48	-
Ebr. Witt	-	-11.000	-	-0,70	-
Sbr. Witt	4	+11.000	-	+0,70	-
Ebr. Schumann	-	-5.000	-	-0,32	-
Sbr. Schumann	4	+5.000	-	+0,32	-
Ebr. Landschütz	-	-7.850	-	-0,50	-
Sbr. Landschütz	3	+7.850	-	+0,50	-
Ebr. Niermann	-	-6.000	-	-0,38	-
Sbr. Niermann	4	+6.000	-	+0,38	-
Ebr. Kunzweiler	-	-7.500	-	-0,48	-
Sbr. Kunzweiler	4	+7.500	-	+0,48	-
Ebr. Sarosta	-	-6.700	-	-0,43	-
Sbr. Sarosta	5	+6.700	-	+0,43	-
Ebr. Ankermann	-	-2.970	-	-0,19	-
Sbr. Ankermann	4	+2.970	-	+0,19	-
Ebr. Burger	-	-7.500	-	-0,48	-
Sbr. Burger	4	+7.500	-	+0,48	-
Ebr. Schwörer	-	-5.700	-	-0,36	-
Sbr. Schwörer	4	+5.700	-	+0,36	-
Ebr. Hoelle	-	-4.680	-	-0,30	-
Sbr. Hoelle	4	+4.680	-	+0,30	-
Ebr. Lauble	-	-8.400	-	-0,53	-
Sbr. Lauble	4	+8.400	-	+0,53	-

^{*} Mittlere Förderraten für winterliche Heizphase und sommerliche Kühlphase

6.6 Berechnete Szenarien

Das kalibrierte Grundwasserströmungsmodell dient zunächst dazu, die angenommenen hydraulischen Verhältnisse auf die Fläche zu extrapolieren und zu bestätigen. Nachdem dies erfolgreich durchgeführt werden konnte, können weitere Szenarien berechnet werden. Im vorliegenden Fall sollten Prognoserechnungen für den Fall der Entnahme und Wiedereinleitung von Grundwasser zu Heiz- und Kühlzwecken gemacht werden.

Bei vorgegebenen, definierten Grundwasserentnahmen und Brunnenstandorten berechnet das Modell die Veränderungen der Strömungsverhältnisse und die Absenkung bzw. die Erhöhung des Wasserspiegels und lässt somit auch Aussagen über die hydraulischen Auswirkungen der Brunnenanlagen zu. Die Fördermengen und Temperaturen die den Prognoserechnungen des Modells zugrunde gelegt wurden, sowie die Daten der im Modellgebiet verwendeten Brunnen sind Tabelle 12 zu entnehmen.

Zur Simulation der Temperaturfeldausbreitung wurde eine flächenhafte Temperatur des Grundwassers in Höhe von 12 °C angenommen. Die Ausbreitung der Temperaturanomalie im Grundwasser wurde über einen Zeitraum von 10 Jahren berechnet. Bereits nach weniger als 5 Jahren stellen sich konstante Verhältnisse ein. Aus den Berechnungsergebnissen lässt sich praktisch jeder beliebige Zeitpunkt darstellen. Folgende Zeitpunkte werden dargestellt bei denen jeweils eine maximale Ausdehnung der Temperaturanomalie zu erwarten ist.

- Ende Heizphase am 15. April nach 9,5 Jahren.
- Ende Kühlphase am 15. September nach 9,91 Jahren

6.7 Ergebnisse der Modellrechnungen

6.7.1 Geohydraulische Auswirkungen – Absenk- und Einleitbereiche

In den Anlagen 4 sind die berechneten Grundwasserhöhen sowie die Strömungsbahnen für Ende Winter dargestellt. Demnach ist ersichtlich, dass beim Betrieb der Brunnen keine gegenseitige hydraulische Beeinflussung der Brunnenanlagen entsteht.

6.7.2 Geothermische Auswirkungen – Temperaturanomalien

Die Anlagen 4 und 5 zeigen die berechneten Temperaturanomalien mit der Abkühlung/Erwärmung des Grundwassers am Ende des Winters nach 9,5 Jahren bzw. am Ende der Kühlphase nach ca. 9,9 Jahren im Abstrom der Rückgabebrunnen. Die Berechnung des Wärmetransports basiert auf der Grundlage des Gleichgewichtszustands der hydraulischen Bedingungen und des Transports der eingeleiteten Wärmeenergie über einen Zeitraum von 9,5 bzw. 9,9 Jahren.

Dabei wird die Jahresmenge des entnommenen Wassers in I/s für den Entnahme - und Rückgabebrunnen für den Zeitraum von 182 bzw. 123 Tage zugrunde gelegt. Nachfolgend werden die Ergebnisse erläutert.

6.7.2.1 Temperaturanomalien Ende Winter (Heizphase)

Aus Anlage 4 sind die berechneten Temperaturanomalien im Abstrom der Rückgabebrunnen bei einer Laufzeit von 9,5 Jahren ersichtlich. Demnach vereinigt sich die Temperaturanomalie aus dem Schluckbrunnen Caritas mit der Anomalie aus dem Schluckbrunnen Quartier 1. Somit erreicht die gemeinsame 1-Grad Temperaturanomalie eine Ausbreitung von 220 m Länge und 130 m Breite. Die 2- und 3- Grad Temperaturanomalie der beiden Schluckbrunnen sind ebenfalls vereinigt und erreichen eine Ausbreitung von 170 m (2-Grad) bis 130 m (3-Grad) Länge und 110 m (2-Grad) bis 90 m (3-Grad) Breite. Die Temperaturanomalie, ausgehend von dem Schluckbrunnen Caritas und Quartier 1, beeinträchtigt die im stromseitlichen Abstrom befindlichen weiteren geothermischen Anlagen nicht.

6.7.2.2 Temperaturanomalien Ende Sommer (Kühlphase)

Aus Anlage 5 sind die berechneten Temperaturanomalien im Abstrom der Rückgabebrunnen am Ende des Sommers bzw. der Kühlphase nach einer Laufzeit von ca. 9,9 Jahren ersichtlich. Aufgrund der sehr geringen Einleitmenge im Sommer ist im Bereich des Schluckbrunnen Caritas keine relevante Temperaturanomalie ausgebildet. Die geringfügige Anomalie vereinigt sich mit der deutlich größeren Temperaturanomalie aus dem Schluckbrunnen Caritas. Im Abstrom der Schluckbrunnen ist noch die 1-Grad und 2-Grad Temperaturanomalie aus der vorangegangenen Heizperiode ausgebildet. Auch in diesem Szenario liegt keine Beeinträchtigung benachbarter geothermischer Anlagen vor.

7. Wasserrechtliche Situation

7.1. Wasserbilanz - Wasserbedarf

Die für den Betrieb der Grundwasserwärmepumpenanlage erforderliche Grundwasserentnahme wurde in Kapitel 4.1 bereits aufgeführt. Entsprechend der vom Auftraggeber angegebenen Bedarfsmengen, bzw. den angegebenen Betriebszeiten ergeben sich folgende Bilanzgrößen für den Wasserrechtsantrag.

Tabelle 13: Wasserbilanz

Einheit	Heizung	Kühlung	Bemerkung
max. Förderrate (I/s)	4,72	3,0	Max. Förderrate = 17 m³/h
max. Förderrate (m³/h)	17,0	10,8	
max. Menge pro Tag (m³)	408	259,2	bei 24 Std./Tag
Fördermenge pro Jahr (m³)	41.850	1.080	Summe = 42.930
Delta T	5	5	

7.2 Vorhandene Wasserrechte

Die im Zu- und Abstrom bekannten Brunnenanlagen sind in Tabelle 12 dokumentiert und aus den Anlagen ersichtlich. Für die Angaben in der Tabelle 12 wird kein Anspruch auf Vollständigkeit erhoben.

8. Literaturverzeichnis

- CHUNMIAO ZENG (2010): MT3DMS Version 5.3, Supplemental Users Guide, Department of Geological Sciences, University of Alabama, Tuscaloosa
- Geologisches Landesamt Baden-Württemberg (1977): Hydrogeologische Karte von Baden-Württemberg Oberrheinebene Raum Rastatt (Bereich Karlsruhe-Bühl), Maßstab 1: 50.000, Freiburg
- Europäisches Programm INTERREG (1995): Hydrogeologische Kartierung der Oberrheinebene Grundwassergleichenpläne, Karlsruhe
- FUNK (2014): Grundwasserwärmepumpenanlage Mehrgenerationenhaus Rheinhausen; Erläuterungsbericht zum Wasserrechtlichen Antrag, Staufen
- FUNK (2020): Grundwasserwärmepumpenanlage Grundschule Rheinhausen Flurstück-Nr.: 620; Mathematisch-numerische Modellrechnungen zur Prognose der geohydraulischen und geothermischen Auswirkungen der geplanten Grundwasserentnahmen, Staufen
- HECHT-MENDEZ J. (2008): Implementation and verification of the USGS solute transport code MT3DMS for groundwater heat transport modelling, Tübingen.
- Hecht-Mendez J., Molina-Giraldo, N.; Bayer P. (2010): Evaluating MT3DMS for Heat Transport Simulation of Closed Geothermal Systems; Groundwater, Vol.45, No. 5, S. 741-756
- Hydrogeologische Kartierung der Oberrheinebene (INTERREG)
- Interaktive Kreiskarte Bürger-GIS Landkreis Emmendingen (2023): [Online im Internet:] URL: https://www.landkreis-emmendingen.de/landkreis-politik/interaktive-kreiskarte-gis (Stand:17.07.2025)
- Landessamt für Geologie Rohstoffe und Bergbau (2007) "Informationen 19" Freiburg i. Breisgau – Hydrogeologischer Bau und Aquifereigenschaften der Lockergesteine im Ober-rheingraben (Baden-Württemberg), Freiburg
- Landesamt für Umwelt- und Bodenschutz: Daten und Kartendienst, Unterlagen zur Grundwassermessstelle 0145/067-2, Karlsruhe
- MOLINA-GIRALDO N. (2011): Verification of MT3DMD as heat transport code using analytical solutions, Master Thesis, Center for Applied Geoscience (ZAG), Tübingen.
- Waterloo Hydrogeologic (2022): Visual MODFLOW Flex 9.0, Integrated Conceptual & Numerical Groundwater Modeling Software, User's Manual, Ontario
- Umweltministerium Baden-Württemberg (2009): Leitfaden zur Nutzung von Erdwärme mit Grundwasserwärmepumpen, Stuttgart

ANLAGEN

Anlage 1: Übersichtskarte

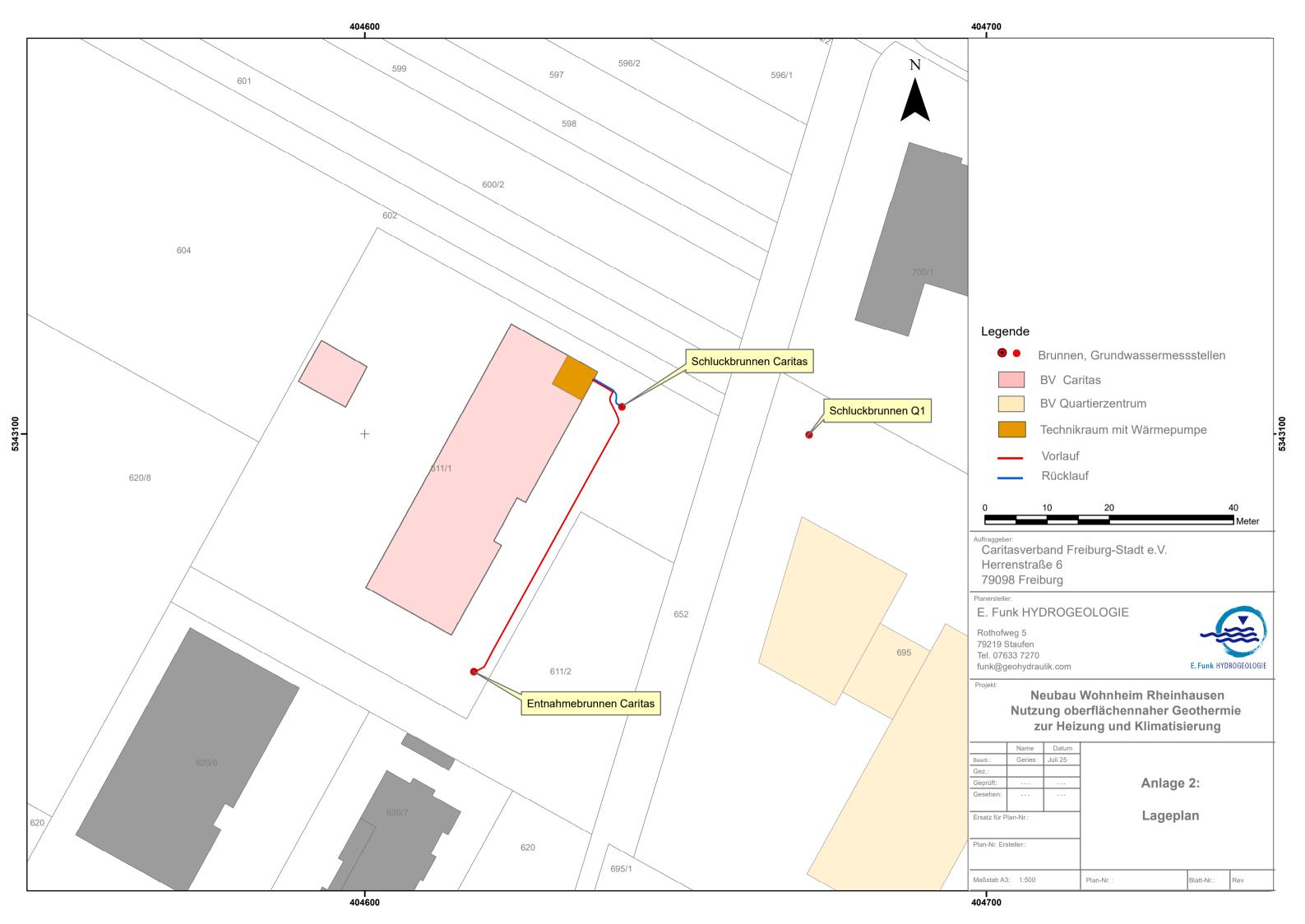
Anlage 2: Lageplan

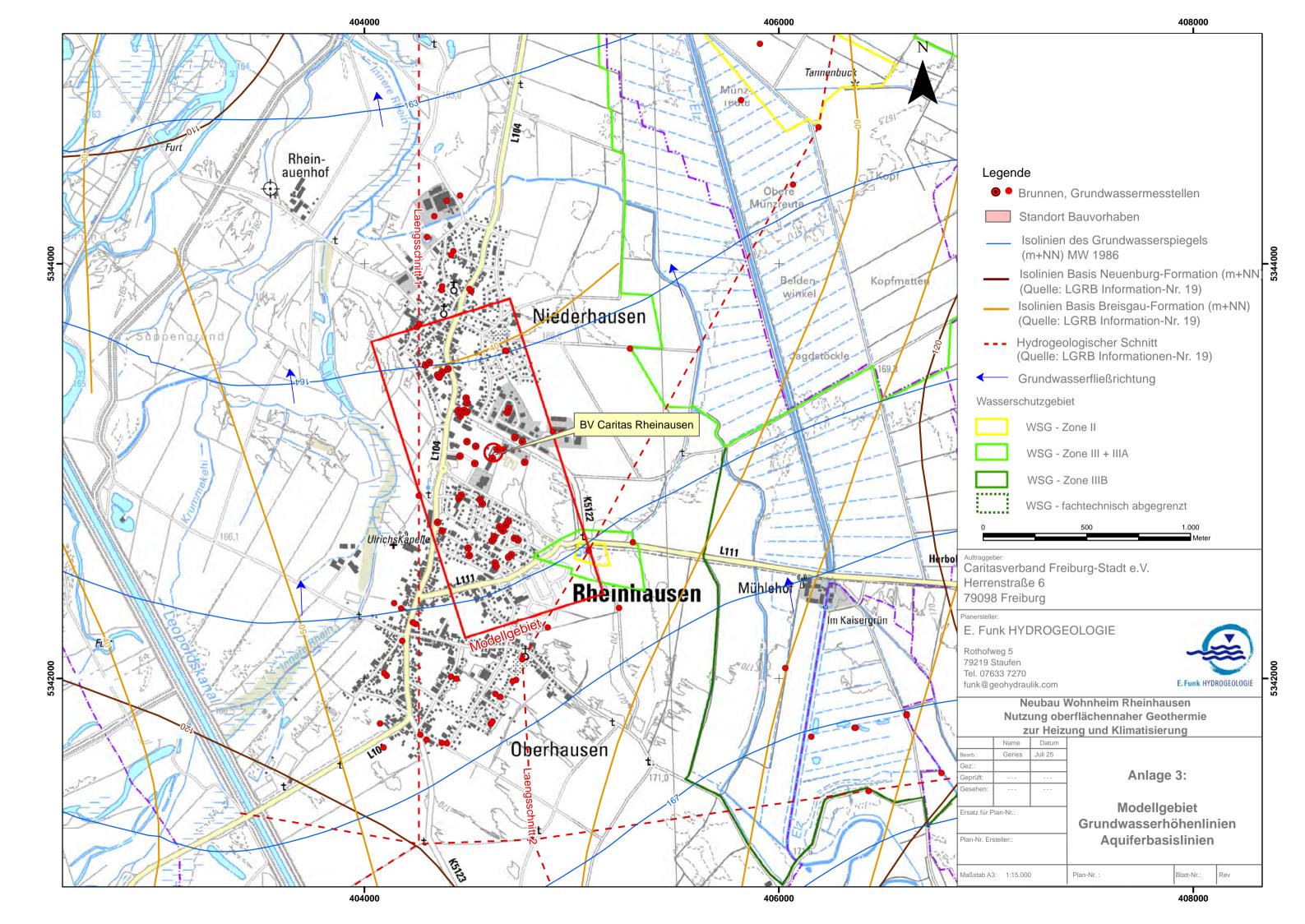
Anlage 3: Modellgebiet, Aquiferbasis, Grundwasserhöhenlinien

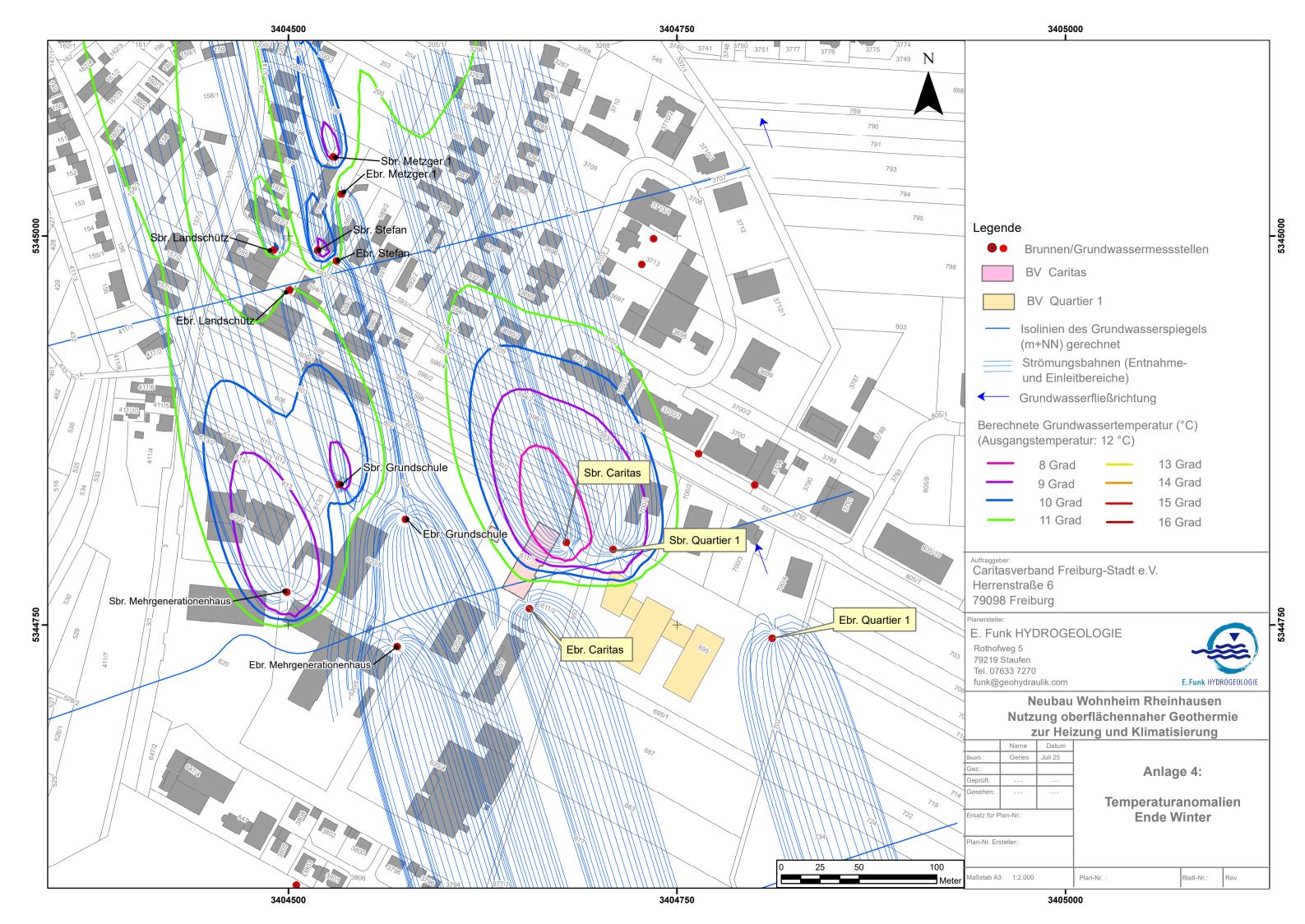
Anlage 4: Strömungsbahnen und Temperaturanomalien (Ende Sommer)
Anlage 5: Strömungsbahnen und Temperaturanomalien (Ende Winter)

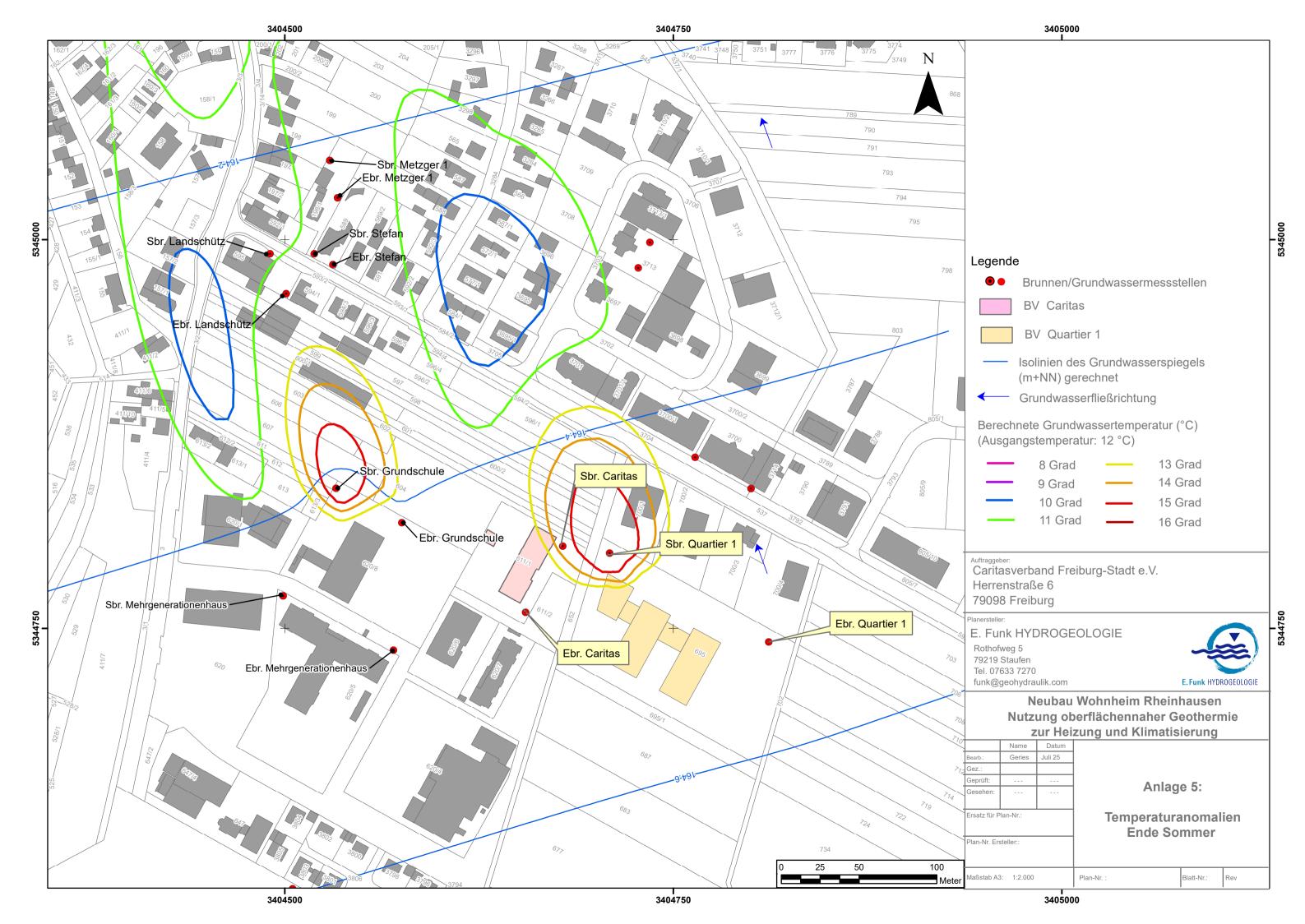
Anlage 6: Schichtenverzeichnis und Ausbaupläne der Brunnen,

Pumpversuchsdaten

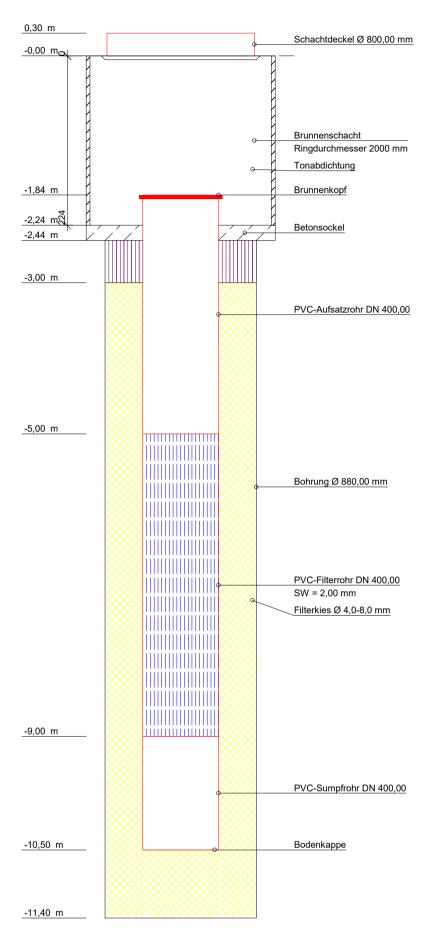

Anlage 7: Datenblätter der Unterwasserpumpe


Anlage 8: Schema und Datenblätter der Wärmepumpenanlage
Anlage 9: Sicherheitsdatenblatt des Kälteträgers R-290 und R-32


(siehe nachfolgende Links)


https://www.tega.de/fileadmin/Downloads und Bilder/kaeltemittel/H-FKW/Sicherheitsdatenblaetter DE/SDB R 32 DE 2023-09-04 TEGA.pdf

https://www.tega.de/fileadmin/Downloads_und_Bilder/kaeltemittel/Natuerliche_Kaeltemittel/Sicherheitsdatenblaetter_DE/SDB_R_290_DE_2023-06-08.pdf



EB 16"-Brunnenausbau Höhe Schacht = 168,80 m üb. NHN

EB Bodenprofil

0,30	° • • • • • • • • • • • • • • • • • • •	0,30	Kies, sandig, schwach schluffig, braun
1.40		1,10	Kies, sandig, schluffig, rot-braun
2,00		0,60	Sand, kiesig, schluffig, rot-braun
2,00		3,40	Kies, sandig, grau
5,40		0,50	Sand, kiesig, grau
5,90 6,40		0,50	Kies, sandig, grau
6,60	• • • • • • • • • • • • • • • • • • •	0,20	Sand, kiesig
9,00		2,40	Kies, sandig, grau
11,40		2,40	Sand, grau

ET 11,40 m

drillexpert GmbH Siemensstraße 9 79331 Teningen-Nimburg Tel.:+49(0)7663-60388 - 0 Fax:+49(0)7663-60388 - 22

5,00 GW 05.09.2024

Bauvorhaben: Grundwasserwärmepumpenanlage Neubau Wohnhaus Caritas, Rheinhausen

Planbezeichnung:

Brunnenausbauskizze und Bodenprofil

Plan-Nr: Projekt-Nr: 2023-0444 09.09.2024 Maßstab: 1:50

Bearbeiter: F. Fechner

Datum:

Anlage

Projekt-Nr.: 2023-0444

SCHICHTENVERZEICHNIS

Kopfblatt zum Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Bohrung: **EB / Blatt 0** Karte i.M. 1: Nr:

Name des Kartenblattes:

Gitterwerte des Bohrpunktes: Rechts: Hoch:

Ort, in oder bei dem die Bohrung liegt: Rheinhausen Kreis: Emmendingen

Zweck der Bohrung: Errichtung eines Brunnens Baugrund:

Höhe des Ansatzpunktes in m über NHN: 168,80

(Ansatzpunkt **0,00** m über Gelände)

Auftraggeber: Caritasverband Freiburg-Stadt e.V., Freiburg

Objekt: Grundwasserwärmepumpenanlage Neubau Wohnhaus Caritas, Rheinhausen

Bohrunternehmer: drillexpert GmbH Geräteführer: Jonas Buderer

Gebohrt vom **05.09.2024** bis **09.09.2024** Endteufe: **11,40** m unter Ansatzpunkt ¹)

Bohrlochdurchmesser: bis 11,40 m 880,00 mm

Bohrverfahren bis 11,40 m Greiferbohrung

Zusätzliche Angaben bei Wasserbohrungen:

Filter: von 9,00 m bis 5,00 m unter Ansatzpunkt Ø 400,00 mm Art: PVC-Filterrohr, SW 2,0 mm

von 10,50 m bis 9,00 m unter Ansatzpunkt Ø 400,00 mm Art: PVC-Sumpfrohr / PVC-Aufsatzrohr von 5,00 - 1,84 m

Kiesschüttung: von 11,40 m bis 3,00 m unter Ansatzpunkt, Körnung: 4 - 8 mm

Abdichtung (Wassersperre): von 3,00 m bis 2,44 m unter Ansatzpunkt

GW eingespiegelt am 05.09.2024 - 13:30 Uhr - Tiefe 5,00 m - UK-Verrohrg. 5,00 m - Bohrtiefe 5,00 m

Brunnenschacht, Bodenkappe, Brunnenkopf

Proben: 12 m KK (v)

Unterschrift des Geräteführers

gez. J. Buderer

Fachtechnisch bearbeitet von Herrn F. Fechner

am 09.09.2024

Proben nach Bearbeitung aufbewahrt bei

Anzahl: 0 unter Nr.:

¹) bei Schrägbohrungen = Bohrlänge

²) Verrohrte Strecken sind unterstrichen

5,90

6,40

c)

f)

b)

c)

f)

a) Kies, sandig

1) Eintragung nimmt wissenschaftlicher Bearbeiter vor

d)

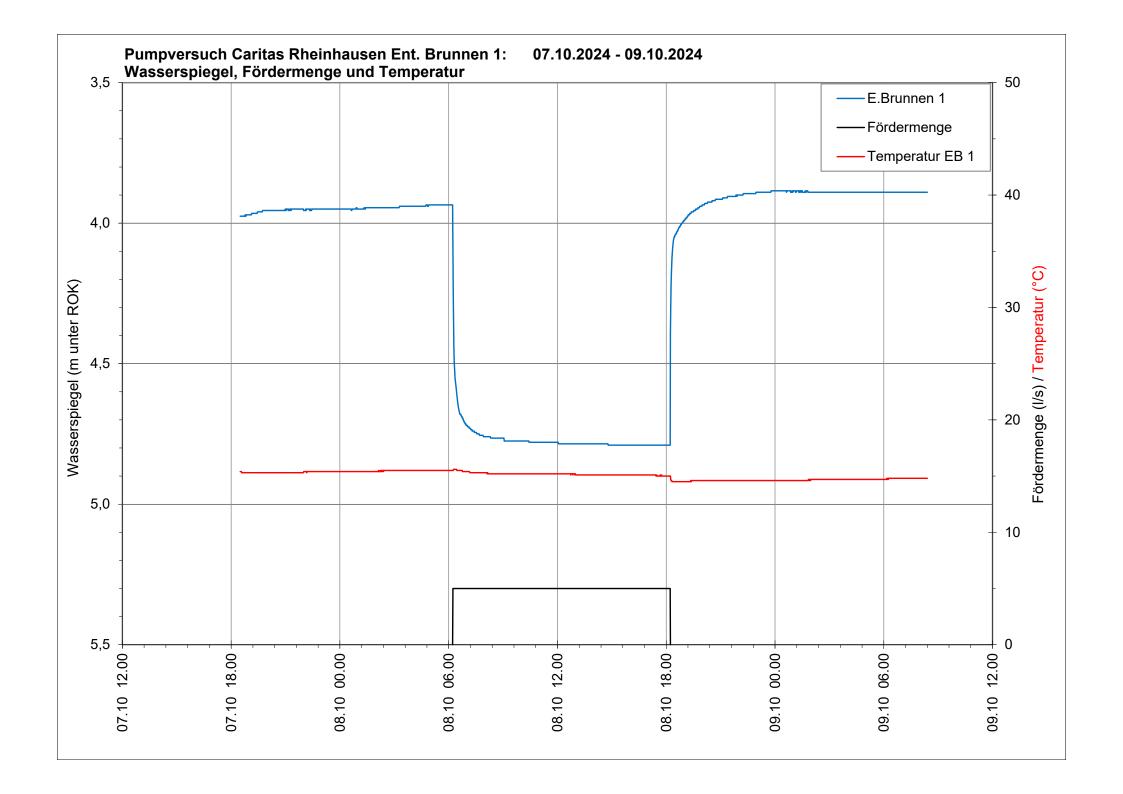
g)

d)

g)

drillexpert GmbH, Siemensstraße 9, 79331 Teningen-Nimburg, Tel.: +49 (0) 7663-60388-0 Anlage: Schichtenverzeichnis expert Bericht: für Bohrungen ohne durchgehende Gewinnung von gekernten Proben 2023-0444 AZ: Grundwasserwärmepumpenanlage Neubau Wohnhaus Caritas, Rheinhausen Bauvorhaben: **Bohrung** Datum: 09.09.2024 Nr.: / Blatt 1 EΒ 1 2 3 5 6 a) Benennung der Bodenart Entnommene und Beimengungen Proben Bis Bemerkungen b) Ergänzende Bemerkungen ¹) Sonderproben ... m Tiefe Wasserführung unter in m Ansatz-Beschaffenheit d) Beschaffenheit e) Farbe Bohrwerkzeuge Nr. Art Unterpunkt nach Bohrgut nach Bohrvorgang Kernverlust kante Übliche i)Kalkg) Geologische ģehalt Benennung Benennung 1) Gruppe a) Kies, sandig, schwach schluffig Greifer Ø 880 von 0,00 - 11,40 m b) 0,30 e) braun d) c) f) h) g) i) a) Kies, sandig, schluffig b) 1,40 d) e) rot-braun c) f) h) g) i) a) Sand, kiesig, schluffig b) 2,00 c) d) e) rot-braun f) g) h) a) Kies, sandig b) 5,40 d) c) e) grau f) h) g) i) a) Sand, kiesig b)

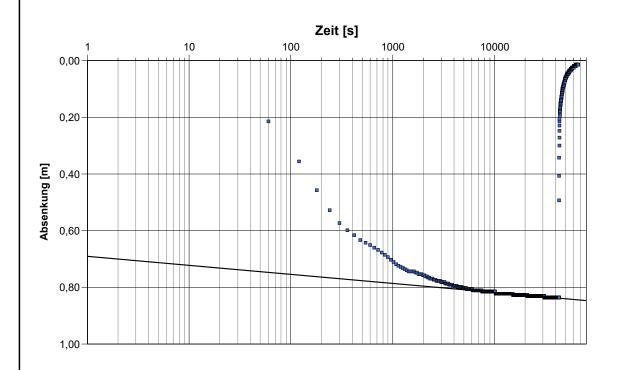
e) grau


e) grau

h)

h)

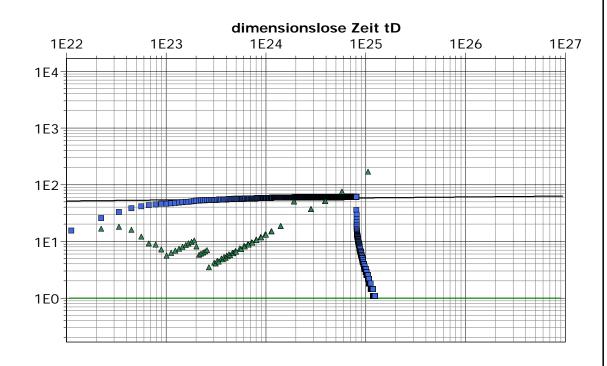
drillexpert GmbH, Siemensstraße 9, 79331 Teningen-Nimburg, Tel.: +49 (0) 7663-60388-0


Schichtenverzeichnis						Anlage:					
drill	e	xpert							Bericht:		
ı U		•		T	ur Bohrungen ohne dur	cngenende	Gewinnung	von gekernten Proben	AZ:	2023	-0444
Bauvorha	ben	Grundwas	serwärm	ери	mpenanlage Neubau	Wohnhaus	Caritas, RI	heinhausen	I		
Bohrung									Datum:	09.09	9.2024
Nr.:		EB	/ Blatt	2							
IVI		ЕВ	/ Diatt	2							
1					2			3	4	5	6
a) Benennung der Bodenart und Beimengungen						E	ntnomme Proben				
Bis m	b)	Ergänzende Be	emerkung	en 1)			Bemerkungen Sonderproben			Tiefe
unter Ansatz- punkt	c)	Beschaffenheit nach Bohrgut		d)	Beschaffenheit nach Bohrvorgang	e) Farbe	!	Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr.	in m Unter-
	f)	Übliche Benennung		g)	Geologische Benennung 1)	h) ¹) Gruppe	i)Kalk- gehalt				kante
	a)	a) Sand, kiesig									
	(b)	b)									
6,60	c)	c) d)			e)		1				
	-,	0)		-′		''					
	f)			g)		h)	i)				
	a)	Kies, sandig		<u> </u>							
	b)					_					
9,00											
3,00	c)			d)	e) <i>grau</i>						
	f)			g)		h)	i)				
	a)	Sand		<u> </u>							
	b)	b)					-				
11,40	- O)				o) array	,	_				
	c)			d)		e) grau					
	f)			g)		h)	i)				
¹) Eintragi	ung	nimmt wissensch	naftlicher l	Bea	beiter vor		1	•			

_					
	Pumpversuch	nsauswertung	Anlage 6		
	Projekt:	PV Caritas Rheinhausen			
	Projekt-Nr:				
Auftraggeber: Caritasverband Freiburg					

Ort: Rheinhausen	Pumpversuch: PV EB	Pumpbrunnen: EBr.
Durchgeführt von: Büro für Hydroge	ologie E. Funk	Versuchsdatum: 08.10.2024
Bearbeiter: Funk	Cooper & Jacob	Datum: 18.12.2024
Aguifermächtigkeit: 5,00 m	Förderrate: 5 [l/s]	

Berechnungsergebnisse nach COOPER & JACOB


Beobachtungsbrunnen	Transmissivität	Hydraul. Durchlässigkeit	Speicherkoeffizient	Abstand zum Pumpbr.
	[m²/s]	[m/s]		[m]
EBr.	2,88 × 10 ⁻²	5,76 × 10 ⁻³		

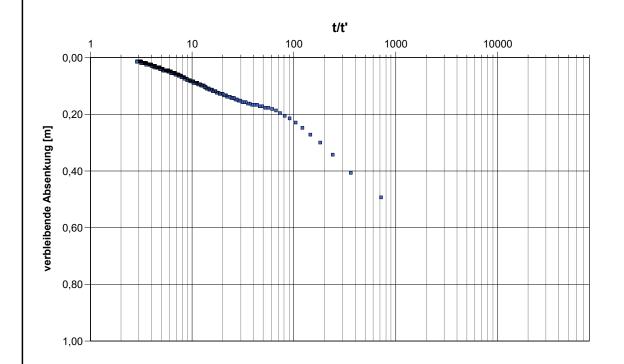
H = 5 m Ruhewasserspiegel = 3,935 Aquifer ungespannt

	Pumpversuch	sauswertung	Anlage 6
	Projekt:	PV Caritas Rheinhausen	
	Projekt-Nr:		
Auftraggeber: Caritasverband Freiburg			

Ort: Rheinhausen	Pumpversuch: PV EB		Pumpbrunnen: EBr.	
Durchgeführt von: Büro für Hydroge	ologie E. Funk		Versuchsdatum: 08.10.2024	
Bearbeiter: Funk	Theis mit 1. Ableit	ung	Datum: 18.12.2024	
Aguifermächtigkeit: 5.00 m	Förderrate: 5 [l/s]			

Berechnungsergebnisse nach THEIS mit Jacob-Korrektur

Beobachtungsbrunnen	Transmissivität	Hydraul. Durchlässigkeit	Speicherkoeffizient	Abstand zum Pumpbr.
	[m²/s]	[m/s]		[m]
EBr.	2,88 × 10 ⁻²	5,75 × 10 ⁻³		

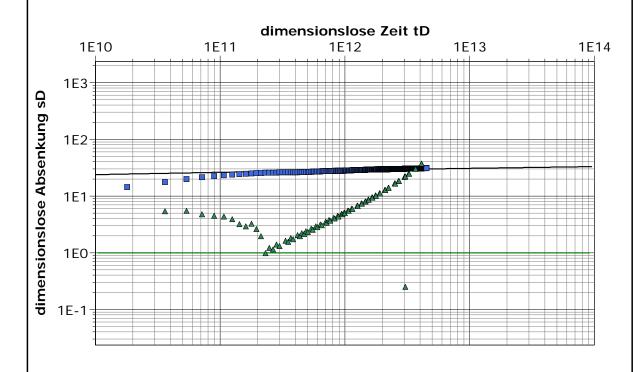

H = 5 m Ruhewasserspiegel = 3,935 Aquifer ungespannt

Brunneneffekte und Doppelporosität erkennbar

_					
	Pumpversuch	nsauswertung	Anlage 6		
	Projekt:	PV Caritas Rheinhausen			
	Projekt-Nr:				
Auftraggeber: Caritasverband Freiburg					

			-	
Ort: Rheinhausen	Pumpversuch: PV EB		Pumpbrunnen: EBr.	
Durchgeführt von: Büro für Hydroged	ologie E. Funk		Versuchsdatum: 08.10.2024	
Bearbeiter: Funk	Theis Wiederanst	ieg	Datum: 18.12.2023	
Aquifermächtigkeit: 5,00 m	Förderrate: 5 [l/s]			

Berechnungsergebnisse nach THEIS & JACOB


• •				
Beobachtungsbrunnen	Transmissivität	Hydraul. Durchlässigkeit	Abstand zum Pumpbr.	
	[m²/s]	[m/s]	[m]	
EBr.	1,48 × 10 ⁻²	2,95 × 10 ⁻³		

H = 5 m Ruhewasserspiegel = 3,935 Aquifer ungespannt

	Pumpversuch	sauswertung	Anlage 6
	Projekt:	PV Caritas Rheinhausen	
	Projekt-Nr:		
Auftraggeber: Caritasverband Freiburg			

Ort: Rheinhausen	Pumpversuch: PV EB		Pumpbrunnen: EBr.	
Durchgeführt von: Büro für Hydroge	ologie E. Funk		Versuchsdatum: 08.10.2024	
Bearbeiter: Funk	Theis WA mit 1. Ableitung		Datum: 18.12.2024	
Aguifermächtigkeit: 5,00 m	Förderrate: 5 [l/s]			

Berechnungsergebnisse nach AGARWAL + THEIS mit Jacob-Korrektur

Beobachtungsbrunnen	Transmissivität	Hydraul. Durchlässigkeit	Speicherkoeffizient	Abstand zum Pumpbr.
	[m²/s]	[m/s]		[m]
EBr.	1,49 × 10 ⁻²	2,98 × 10 ⁻³		

H = 5 m Ruhewasserspiegel = 3,935 Aquifer ungespannt

evtl. Positive Randbedingungen/ Doppelporosität erkennbar

Prüfberichts-Nr.: 24-01472

Probe: 24-01472-001

Auftraggeber (nicht akkreditierter Bereich) Probenahmemethode:

Probenahmezeitpunkt: 02.12.2024 16:30

Probenbezeichnung: Caritas Rheinhausen, Wärmepumpe
Untersuchungsprogramm: Grundwasser A2 Leitfaden gemäß LFU

Vor-Ort-Parameter

Probenahme durch:

Parameter	Methode	Ergebnis	Einheit	Spezifikation
Farbe, qualitativ (vor Ort)	DIN EN ISO 7887 (C1-2) 2012-04	farblos		
Trübung, qualitativ (vor Ort)	DIN EN ISO 7027 (C21) 2016-11	klar		
freies Chlor (vor Ort)	DIN EN ISO 7393-2 (G4-2) 2019-03	< 0,05	mg/l	

Material:

Eingangsdatum:

Grundwasser

keine Angabe

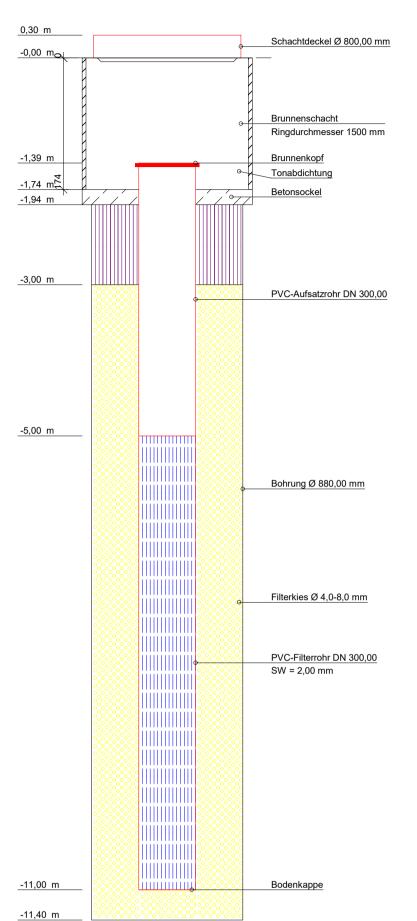
03.12.2024

Chemische Untersuchungen

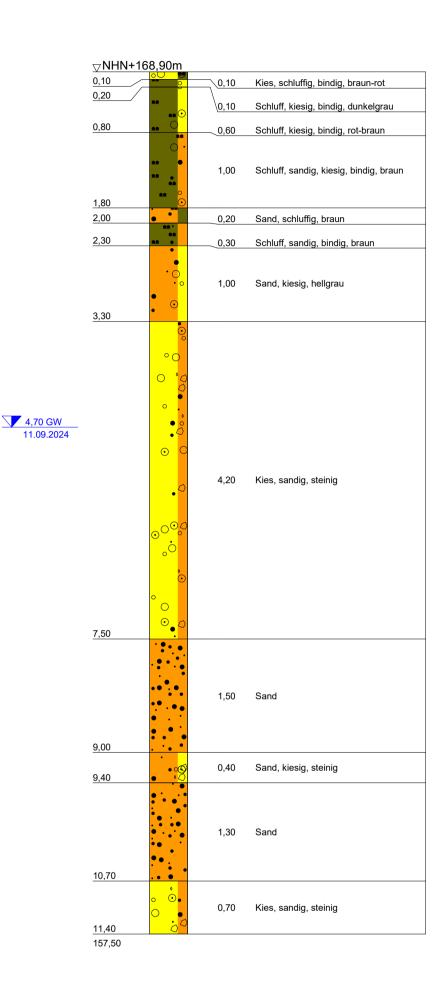
Parameter	Methode	Ergebnis	Einheit	Spezifikation
elektrische Leitfähigkeit (25 °C, Labormessung)	DIN EN 27888 (C8) 1993-11	665	μS/cm	
pH-Wert (Labormessung)	DIN EN ISO 10523 (C5) 2012-04	7,4		
Sauerstoffgehalt (Labormessung)	DIN ISO 17289 (G25) 2014-12	8,8	mg/l	
abfiltrierbare Stoffe	DIN EN 872 (H33) 2005-04	< 1,0	mg/l	
Eisen	DIN EN ISO 11885 (E22) 2009-09	< 0,02	mg/l	
Eisen, gelöst (filtriert)	DIN EN ISO 11885 (E22) 2009-09	< 0,02	mg/l	
Mangan	DIN EN ISO 11885 (E22) 2009-09	< 0,005	mg/l	
Mangan, gelöst (filtriert)	DIN EN ISO 11885 (E22) 2009-09	< 0,005	mg/l	
Silicium	DIN EN ISO 11885 (E22) 2009-09	5,8	mg/l	
Natrium	DIN EN ISO 11885 (E22) 2009-09	11	mg/l	
Kalium	DIN EN ISO 11885 (E22) 2009-09	1,7	mg/l	
Magnesium	DIN EN ISO 11885 (E22) 2009-09	12	mg/l	
Calcium	DIN EN ISO 11885 (E22) 2009-09	110	mg/l	
Chlorid	DIN EN ISO 10304-1 (D20) 2009-07	27	mg/l	
Nitrat	DIN EN ISO 10304-1 (D20) 2009-07	32	mg/l	
Sulfat	DIN EN ISO 10304-1 (D20) 2009-07	39	mg/l	
Säurekapazität bis pH 4,3 (m-Wert)	DIN 38409-7 (H7) 2005-12	5,0	mmol/l	
Basekapazität bis pH 8,2 (p-Wert)	DIN 38409-7 (H7) 2005-12	0,52	mmol/l	
Sulfid	DIN 38405-27 (D27) 2017-10	< 0,10	mg/l	
Ammonium	DIN 38406-5 (E5) 1983-10	< 0,01	mg/l	
Nitrit	DIN EN 26777 (D10) 1993-04	< 0,01	mg/l	
aggressive Kohlensäure	Berechnet	0,0	mg/l	
freie gelöste Kohlensäure (als CO2)	Berechnet	23,0	mg/l	
Gesamthärte (°dH)	Wasserhärte berechnet	18,3	°dH	
Carbonathärte	Wasserhärte berechnet	14,1	°dH	

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Proben und Untersuchungsumfänge. Eine auszugsweise Vervielfältigung dieses Prüfberichtes bedarf einer Genehmigung des Prüflabors.

Wir hoffen, Ihnen mit unseren Ausführungen weitergeholfen zu haben und stehen Ihnen für weitere Fragen und Problematiken jederzeit gerne zur Verfügung.


Für Sie zuständig: Thomas Kopf, QS-Leiter Trinkwasser / +49 7634 5103-22

Vielen Dank für Ihren Auftrag!


Thomas Kopf QS-Leiter Trinkwasser

Dieser Prüfbericht wurde elektronisch erstellt, geprüft und am 17.12.2024 14:11 freigegeben. Er ist ohne Unterschrift gültig.

RB 12"-Brunnenausbau Höhe Schacht = 168,90 m üb. NHN

RB Bodenprofil

ET 11,40 m

drillexpert GmbH Siemensstraße 9 79331 Teningen-Nimburg Tel.:+49(0)7663-60388 - 0 Fax:+49(0)7663-60388 - 22

Bauvorhaben: Grundwasserwärmepumpenanlage Neubau Wohnhaus Caritas, Rheinhausen

Planbezeichnung:

Brunnenausbauskizze und Bodenprofil

Plan-Nr: Projekt-Nr: 2023-0444 11.09.2024 Datum:

Maßstab: 1:50 Bearbeiter: F. Fechner

Anlage

Projekt-Nr.: 2023-0444

SCHICHTENVERZEICHNIS

Kopfblatt zum Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Bohrung: RB / Blatt 0 Karte i.M. 1: Nr:

Name des Kartenblattes:

Gitterwerte des Bohrpunktes: Rechts: Hoch:

Ort, in oder bei dem die Bohrung liegt: Rheinhausen Kreis: Emmendingen

Zweck der Bohrung: Errichtung eines Brunnens Baugrund:

Höhe des Ansatzpunktes in m über NHN: 168,90

(Ansatzpunkt 0,00 m über Gelände)

Auftraggeber: Caritasverband Freiburg-Stadt e.V., Freiburg

Objekt: Grundwasserwärmepumpenanlage Neubau Wohnhaus Caritas, Rheinhausen

Bohrunternehmer: drillexpert GmbH Geräteführer: Jonas Buderer

Gebohrt vom 10.09.2024 bis 11.09.2024 Endteufe: 11,40 m unter Ansatzpunkt 1)

Bohrlochdurchmesser: bis 11,40 m 880,00 mm

Bohrverfahren bis 11,40 m Greiferbohrung

Zusätzliche Angaben bei Wasserbohrungen:

Filter: von 11,00 m bis 5,00 m unter Ansatzpunkt Ø 300,00 mm Art: PVC-Filterrohr, SW 2,0 mm

von 5,00 m bis 1,39 m unter Ansatzpunkt Ø 300,00 mm Art: PVC-Aufsatzrohr

Kiesschüttung: von 11,40 m bis 3,00 m unter Ansatzpunkt, Körnung: 4 - 8 mm

Abdichtung (Wassersperre): von 3,00 m bis 1,94 m unter Ansatzpunkt

GW eingespiegelt am 11.09.2024 - Tiefe 4,70 m

Brunnenschacht, Bodenkappe, Brunnenkopf

Proben: 12 m KK (v)

Unterschrift des Geräteführers

gez. J. Buderer

Fachtechnisch bearbeitet von Herrn F. Fechner

am 11.09.2024

Proben nach Bearbeitung aufbewahrt bei

Anzahl: 0 unter Nr.:

¹) bei Schrägbohrungen = Bohrlänge

²) Verrohrte Strecken sind unterstrichen

drillexpert	GmbH, Siemensstraße 9	, 79331 Teningen-Nimburg, T	Tel.: +49 (0) 7	663-6038	8-0			
		Coh	nichtenve	rzoloh	nio	Anlage:		
dri	expert				g von gekernten Proben	Bericht:		
•		iai borrangen onne da	rengeneriae (Sewinian	g von gekenner i roben	AZ:	2023	-0444
Bauvorha		ärmepumpenanlage Neubau	Wohnhaus (Caritas, R	Rheinhausen			
Bohrung Nr.:		latt 1				Datum:	11.09).2024
IVI	7.5	iau i						
1		2			3	4	5	6
	Benennung der Bod und Beimengungen	enart				Er	ntnomme Proben	
Bis m	b) Ergänzende Bemerk	kungen 1)			Bemerkungen Sonderproben			Tiefe
unter Ansatz- punkt	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr.	in m Unter- kante
	f) Übliche Benennung	g) Geologische Benennung 1)	h) ¹) Gruppe	i)Kalk- gehalt				namo
	a) Kies, schluffig, bind	ig		I	Greifer Ø 880 von 0,00 - 11,40 m			
	b)							
0,10	c)	d)	e) <i>braur</i>	n-rot				
	f)	g)	h)	i)				
	a) Schluff, kiesig, bind	ig						
	b)				_			
0,20	c)	d)	e) dunk d	elgrau				
	f)	g)	h)	i)				
	a) Schluff, kiesig, bind	ig						
	b)							
0,80	c)	d)	e) <i>rot-bi</i>	raun				
	f)	g)	h)	i)				
	a) Schluff, sandig, kies	sig, bindig						
	b)							
1,80	c)	d)	e) <i>braur</i>	1				
	f)	g)	h)	i)				
	a) Sand, schluffig	<u>'</u>						
	b)							
2,00	c)	d)	e) <i>braur</i>)				
	f)	g)	h)	i)				
	a) Schluff, sandig, bind	lig						
	b)							
2,30	c)	d)	e) <i>braur</i>	7	1			

h)

g)

1) Eintragung nimmt wissenschaftlicher Bearbeiter vor

b)

c)

f)

b)

c)

f)

a) Kies, sandig, steinig

1) Eintragung nimmt wissenschaftlicher Bearbeiter vor

d)

g)

d)

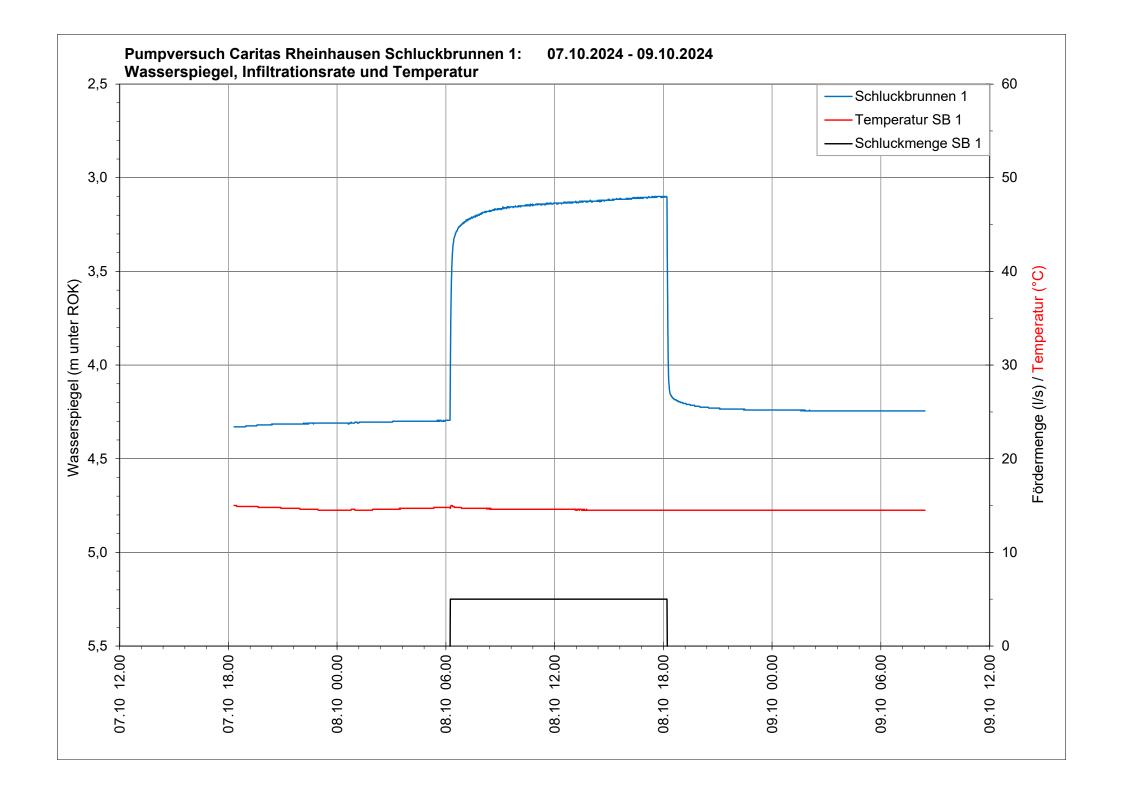
g)

10,70

11,40

drillexpert	Gmi	bH, Siemensstraße 9, 79	331 Teningen-Nimburg, Tel	l.: +49 (0) 7	7663-60388	8-0			
							Anlage:		
drill	e	xpert			erzeich		Bericht:		
<u>1</u>	für Bohrungen ohne durchgehende Gewinnung von gekernten Proben					g von gekernten Proben	AZ:	2022	-0444
Bauvorhal	hen:	Grundwasserwärm	nepumpenanlage Neubau V	/ohnhaus	Caritas. R	heinhausen	\^ <u>Z</u> .	2023	-0
Bohrung							Datum:	11.09	0.2024
Nr.:		RB / Blatt	2						
1			2			3	4	5	6
	a)	Benennung der Bodenar und Beimengungen	rt				Er	ntnomme Proben	
Bis m unter	b)	Ergänzende Bemerkung	en ¹)			Bemerkungen Sonderproben Wasserführung			Tiefe
Ansatz- punkt	c)	Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr.	in m Unter- kante
	f)	Übliche Benennung	g) Geologische Benennung ¹)	h) ¹)	i)Kalk-	1			
	a)	Sand, kiesig	benefititing)	Gruppe	gehalt				
	b)								
3,30 c)			d)	e) <i>hellgrau</i>		-			
			,	1.	L	_			
	f)		g)	h)	i)				
	a)	Kies, sandig, steinig							
	b)								
7,50	- \		L.N	La		_			
	c)		d)	e)					
	f)		g)	h)	i)	1			
	a)	Sand	<u> </u>						
	b)					-			
9,00			۵۱	T _a \					
	c)		d)	e)					
	f)		g)	h)	i)				
	a)	Sand, kiesig, steinig	ı	'	1				
	b)					-			
9,40			.						
	c)		d)	e)					
	f)		g)	h)	i)	1			
	a)	Sand							

e)


h)

e)

h)

i)

i)

Datenblatt

Einzelpumpe 1 x 100 %

Kunden-Pos.-Nr.:01.02.0008 von Datum: 25.07.2024

Beleg Nr.: Caritas Barrierefreies Haus

Menge: 1

UPA C 150-016/03EE+DN 100-2,20-3E

Nummer: 4005458177 Positionsnr.: 100

Datum: 29.07.2024

Seite: 1 / 9

Versions-Nr.: 3

Betriebsdaten Punktnr. 1 (Definierend)

Betriebsdaten Punktnr. 1 (Definierena)		
Angefragter Förderstrom	17,00 m³/h	Förderstrom	17,00 m³/h
Angefragte Förderhöhe	20,00 m	Förderhöhe ohne RV	23,29 m
Fördermedium	Wasser	MEI (Index	≥ 0,70
	sauberes Wasser	Mindestwirkungsgrad)	
Detaillierte Angaben zum	Chemisch und mechanisch	Wirkungsgrad ohne RV	77,1 %
Fördermedium	die Werkstoffe nicht	Leistungsbedarf	1,40 kW
	angreifend	Pumpendrehzahl	2845 1/min
Umgebungslufttemperatur	20,0 °C	Nullpunktförderhöhe	31,79 m
Temperatur Fördermedium	20,0 °C	Min. zul. Förderstrom für	1,68 m³/h
Mediumdichte	998 kg/m³	Kurzzeitbetrieb	
Viskosität Fördermedium	1,00 mm ² /s	Min. zul. Förderstrom für	6,70 m³/h
Förderhöhe mit RV	23,10 m	stabilen Dauerbetrieb	
Umstr ömungsgeschwindigk	0,2 m/s	Max. zul. Förderstrom	21,19 m³/h
eit		Ausführung	Einzelpumpe 1 x 100 %
Max. Leistung für Kennlinie	1,48 kW		
Punktnr. 2			
Angefragter Förderstrom	7,00 m³/h	Förderstrom	7,00 m³/h
Angefragte Förderhöhe	20,00 m	Förderhöhe ohne RV	29,90 m
Umgebungslufttemperatur	20,0 °C	MEI (Index	≥ 0,70
T	00.0.00	Min al a stanial a an an an all	-, -

Punktnr. 2

Angefragter Förderstrom	7,00 m³/h	Förderstrom	7,00 m ³ /h
Angefragte Förderhöhe	20,00 m	Förderhöhe ohne RV	29,90 m
Umgebungslufttemperatur	20,0 °C	MEI (Index	≥ 0,70
Temperatur Fördermedium	20,0 °C	Mindestwirkungsgrad)	
Mediumdichte	998 kg/m³	Wirkungsgrad ohne RV	52,1 %
Viskosität Fördermedium	1,00 mm ² /s	Leistungsbedarf	1,09 kW
Förderhöhe mit RV	29,81 m	Pumpendrehzahl	2845 1/min
Umstr ömungsgeschwindigk	0,2 m/s	Nullpunktförderhöhe	31,79 m
eit		Min. zul. Förderstrom für	1,68 m³/h
		Kurzzeitbetrieb	

Max. Leistung für Kennlinie	1,48 kW	Min. zul. Förderstrom für	6,70 m³/h
May zul Färderetrom	$21.10 \text{ m}^3/\text{h}$	stabilan Dauarhatriah	

21,19 m³/h Max. zul. Förderstrom stabilen Dauerbetrieb

Ausführung

Ausführung

Pumpennorm Ausführung Aufstellart Ausführung nach Norm Flanschnorm Druckstutzen Druckstutzen Nennweite Druckstutzen Nenndruck Spaltring	Unterwassermotorpumpe	Mindestüberdeckung	0,50 m
	Blockbauweise	Rückschlagventil	mit
	Vertikal	Saugsieb	mit
	Trinkwasser nach ACS	Ventilteller gebohrt	Nein
	EN ISO 228-1	Antiwirbelplatte	ohne
	G 3	Lagerbock	ohne
	PN 63	Max. Aussendurchmesser	150,0 mm
	Spalt-/Laufring	Aggregatlänge	819,0 mm
Laufraddurchmesser	87,0 mm	Aggregatiange	019,011111

Datenblatt

Kunden-Pos.-Nr.:01.02.0008 von Datum: 25.07.2024

Beleg Nr.: Caritas Barrierefreies Haus

Menge: 1

UPA C 150-016/03EE+DN 100-2,20-3E

Nummer: 4005458177 Positionsnr.: 100

Datum: 29.07.2024 Seite: 2 / 9

Versions-Nr.: 3

Antrieb, Zubeh ör

Motorgröße 100 Motordrehzahl 2845 1/min Frequenz 50 Hz

Ausgelegt für den Betrieb am

Frequenzumrichter

Ja, Spannungsanstieg und

Höchstwerte der

Spannungsspitzen siehe

Betriebsanleitung

Bemessungsspannung 400 V
Motorbemessungsleist. P2 2,20 kW
vorhandene Reserve 48,52 %
Motornennstrom 5,5 A
Motorschutzart IP68
Cosphi bei 4/4 Last 0,77
Motorwirkungsgrad bei 4/4 75,0 %

Last

Einschaltart Direkteinschaltung Stromart Dreiphasen (3~)

Trinkwasserf üllung Nein J2 Wicklung Nein Kabelanl ängung Im Werk anlängen

Kurzkabel F4

Kurzkabelquerschnitt 1,50 mm²
Kurzkabellänge 2,50 m
Höhe der Kurzleitung 1 6,2 mm
Breite der Kurzleitung 1 14,5 mm
Anlängeleitung R4
Anlängekabelquerschnitt 6,00 mm²
Anlängekabell änge 28,00 m

Durchmesser der Anlängeleitung 1

Anlängeleitungen ausgelegt f ür Verlegung in Luft an Flächen

19,3 mm

CrNiMo-Stahl 1.4404

Nitrilkautschuk NBR

CrNiMo-Stahl 1.4408

anliegend.

Kabel Abschirmung mit Manteltyp ohne

Frequenzumrichterbetrieb nur f ür Bemessungsspannung

zulässig.

Werkstoffe Pumpe E - Werkstoffe Motor E

Sauggeh äuse (106)

Stufengeh äuse (108)

Pumpenwelle (211)

Rechtslaufrad (232)

Lagerkörper (382.52)

Spaltring (502)

CrNi-Stahl 1.4301

CrNi-Stahl 1.4301

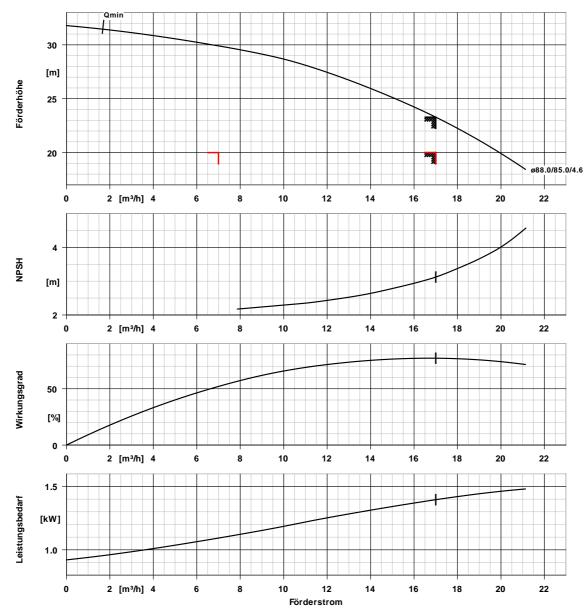
Nitrilkautschuk NBR

Laufring (503) Lagerbuchse (545) Ventilgehaeuse (Rueckschlagventil) (751)

Hydraulische Kennlinie

Kunden-Pos.-Nr.:01.02.0008 von Datum: 25.07.2024

Beleg Nr.: Caritas Barrierefreies Haus


Menge: 1

UPA C 150-016/03EE+DN 100-2,20-3E

Nummer: 4005458177 Positionsnr.:100 Datum: 29.07.2024

Seite: 3 / 9

Versions-Nr.: 3

Kurvendaten

Drehzahl 2845 1/min Mediumdichte 998 kg/m³ Viskosit ät 1,00 mm²/s Förderstrom 17,00 m³/h Angefragter Förderstrom 20,00 m Förderhöhe ohne RV 23,29 m

MEI (Index Mindestwirkungsgrad) Wirkungsgrad ohne RV Leistungsbedarf NPSHR Kurvennummer Effektiver

Effektiver Laufraddurchmesser Abnahmenorm ≥ 0,70

77,1 %

1,40 kW

3,12 m

UPA150C1650/1

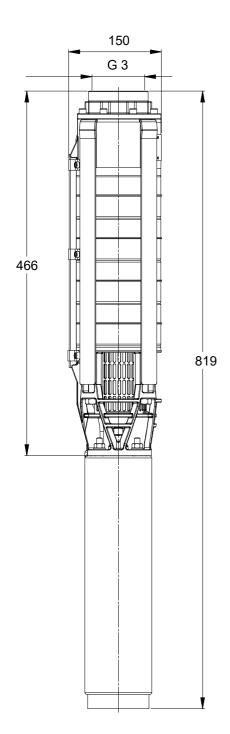
87,0 mm

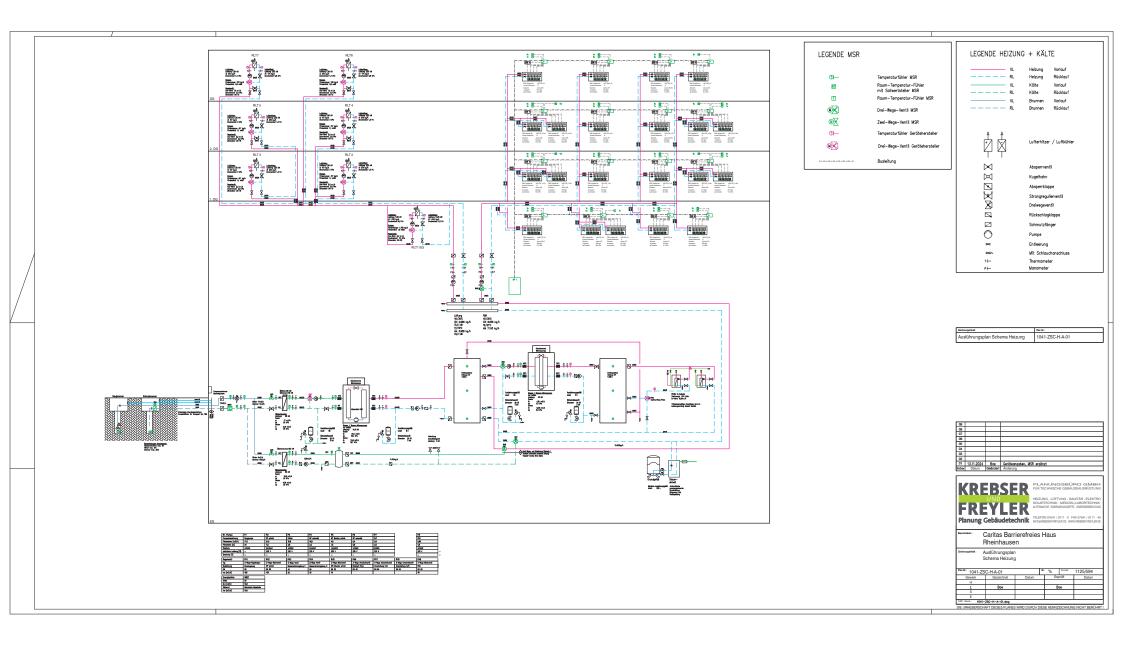
Toleranz nach ISO 9906 Kl. 2B, > 10 kW Toleranz nach ISO 9906 Kl. 3B, < 10 kW

Aufstellungsplan

Kunden-Pos.-Nr.:01.02.0008 von Datum: 25.07.2024

Beleg Nr.: Caritas Barrierefreies Haus


Menge: 1


UPA C 150-016/03EE+DN 100-2,20-3E

Nummer: 4005458177 Positionsnr.:100 Datum: 29.07.2024 Seite: 4 / 9

Versions-Nr.: 3

Modell: SIGMA Sky OH R7 8.2

Option: XLN-FLUS-V3MC-DVS-MAFR-RUB-BC-A43-SETD-

.....

R1PU-RE1S-SOFT-IA-ENT-SV3-PBA-AM-SEST

HEIZEN

Leistungsdaten		
Heizleistung	kW	91.3
Gesamtleistungsaufnahme	kW	19.2
Leistungsaufnahme Verdichter	kW	18.5
Stromaufnahme (E0)	Α	37.2
Leistungsfaktor (E0)	-	0.75
Wärmeaufnahmekapazität	kW	72.2
COP	W/W	4.76
SCOP LT ^(B2) /MT ^(B3)	W/W	5.70/4.57
$\eta_{s,h} LT^{(B2)}/MT^{(B3)}$	%	220/175
Quelle		
Mediumart		Wasser
Verunreinigungsfaktor	m²K/kW	0.000
Mediumtemp. Ein-/Austritt	°C	8.0/5.1
Fördervolumen	m³/h	21.50
Druckverlust	kPa	42.1

Verbraucher		
Mediumart		Wasser
Verunreinigungsfaktor	m²K/kW	0.000
Mediumtemp. Ein-/Austritt	°C	35.0/40.0
Fördervolumen	m³/h	15.80
Druckverlust	kPa	19.7

AUSLEGUNGSDATEN

ALLGEMEINE DATEN					
Verdichtertyp		Scroll			
Anzahl Verdichter		2			
Anzahl Kältekreise		1			
Leistungsstufen		2			
Mindesleistungsstufe	%	50.0			
Kältemittel		R32			
GWP		675.0			
gesamt Kältemittel Füllmenge	kg	6.10			
CO2-Äquivalent	kg	4118			
Gesamtölmenge	kg	6.60			

ABMESSUNGEN					
Länge	mm	1468			
Breite	mm	794			
Höhe	mm	1900			
Transportgewicht	kg	573			
Nettogewicht	kg	548			

ELEKTRISCHE DATEN					
Nominalspannung	Ph/V/Hz	3/400/50+N			
Maximalspannung	V	440			
Minimalspannung	V	360			
Max. Leistungsaufnahme (P1)	kW	30.3			
Max. Stromaufnahme (E0)	Α	50.5			
Max. Anlaufstrom (E0)	Α	109			
Leistungsaufnahme Standby	kW	0.200			
Leistungsfaktor (E0)		0.87			

Schallangaben		
Errechnete Schallleistung	db(A)	72
Schalldruckpegel(CO) [10.0 m]	db(A)	40

Gesamt-Schallleistungspegel	dB	73	83	76	67	63	54	45	42

- (A0) Die angegebenen technischen Daten sind nicht verbindlich. Der Hersteller behält sich das Recht vor, Änderungen jederzeit für die Produktverbesserung durchzuführen.
- (A2) Nach Standard: EN 14511-2022
- (B2) Berechnet gemäß Verordnung (EU) 2013/813 der Kommission: mittlerer Bereich/Grundwasser/Niedrige Temperatur/Variabler Austritt/konst. Volumenstrom Verbraucher/konst. Volumenstrom Quelle
- (B3) Berechnet gemäß Verordnung (EU) 2013/813 der Kommission: mittlerer Bereich/Grundwasser/Mitteltemperatur/Variabler Austritt/konst. Volumenstrom Verbraucher/konst. Volumenstrom Quelle
- (C0) Der Schalldruck wird nach der folgenden Schallausbreitungsmethode berechnet: Halbkugel ISO EN 3744-Quelle
- (C0) Beräknad ljudeffekt kyldrift: enhet som arbetar vid nominell kyleffekt, utan något tillbehör, med inkommande/utgående köldbärartemperatur 10/7°C samt inkommande/utgående värmebärartemperatur för värmeväxlare 40/45 °C. Värden erhållna från mätningar gjorda enligt ISO 3744 standard. Beräknad ljudeffekt är det ända bindande värdet.

Die akustischen Daten beziehen sich auf die oben beschriebenen Standardbedingungen in bevorzugten und reproduzierbaren Betriebsart. Akustische Daten für wassergekühlte Geräte sind KEINE Euovent-zertifizierten Daten.

Alle Daten, mit Ausnahme von "Errechnete Schallleistung", werden nur zu Beispielzwecken angegeben und können nicht für Prognosezwecke oder zur Verifizierung von erzwungenen Grenzwerten verwendet werden.

In Bezug auf die Schallemmisionen verpflichtet sich der Hersteller zur Einhaltung der deklarierten Daten von "Errechnete Schallleistung".

Jegliche Haftung des Herstellers hinsichtlich der Auswirkungen solcher Emissionen in Bezug auf den Standort der Anlage und andere Bedingungen im Zusammenhang mit der Installation des Geräts ist ausgeschlossen.

Die Umgebung und die Installationscharakteristik sowie die Betriebsmodi können die Schallemissionen verändern.

Die gesamte akustische Bewertung in Bezug auf die Standortbedingungen liegt in der Verantwortung des Installateurs.

- (R1) Die angegebene Kältemittelfüllung wird berechnet. Die Kältemittelfüllung kann je nach Version / Zubehör und Produktversion variieren.
- (P1) Spannungsversorgung zum Betrieb der Einheit. Summe der vollen Leistungsaufnahme der Komponenten.
- (E0) Elektrische Daten können ohne vorherige Ankündigung geändert werden. Daher ist es notwendig, sich immer auf den elektrischen Schaltplan zu beziehen.

Modell: SIGMA Zero Hi OH 45

Option: DVS-MAFR-SARA-A43N-SETV-R1PU-RE1S-RMMT-IA-

ENM-SV3-PBA-AG-SEST

.....

HEIZEN

Leistungsdaten						
Heizleistung	kW	40.0				
Ungenutzte Kapazität	-	7.1%				
Gesamtleistungsaufnahme	kW	9.75				
Leistungsaufnahme Verdichter	kW	9.69				
Stromaufnahme (E0)	Α	14.8				
Leistungsfaktor (E0)	-	0.96				
Wärmeaufnahmekapazität	kW	30.3				
COP	W/W	4.10				
SCOP LT ^(B2) /MT ^(B3)	W/W	6.18/4.67				
$\eta_{s,h} LT^{(B2)}/MT^{(B3)}$	%	239/179				
Quelle						
Mediumart		Wasser				
Verunreinigungsfaktor	m²K/kW	0.000				
Mediumtemp. Ein-/Austritt	°C	37.0/30.0				
Fördervolumen	m³/h	3.754				
Druckverlust	kPa	3.1				

Verbraucher					
Mediumart		Wasser			
Verunreinigungsfaktor	m²K/kW	0.000			
Mediumtemp. Ein-/Austritt	°C	63.0/70.0			
Fördervolumen	m³/h	5.105			
Druckverlust	kPa	5.7			

AUSLEGUNGSDATEN

ALLGEMEINE DATEN					
Verdichtertyp		Scroll			
Anzahl Verdichter		1			
Anzahl Kältekreise		1			
Leistungsstufen		Inverter			
Mindesleistungsstufe	%	16.7			
Kältemittel		R290			
GWP		3.3			
gesamt Kältemittel Füllmenge	kg	2.00			
CO2-Äquivalent	kg	6.60			
Gesamtölmenge	kg	1.30			

ABMESSUNGEN					
Länge	mm	1033			
Breite	mm	712			
Höhe	mm	1700			
Transportgewicht	kg	325			
Nettogewicht	kg	320			

ELEKTRISCHE DATEN					
Nominalspannung	Ph/V/Hz	3/400/50+N			
Maximalspannung	٧	440			
Minimalspannung	V	360			
Max. Leistungsaufnahme (P1)	kW	14.2			
Max. Stromaufnahme (E0)	Α	21.7			
Max. Anlaufstrom (E0)	Α	10.0			
Leistungsaufnahme Standby	kW	0.100			
Leistungsfaktor (E0)		0.95			

Schallangaben				
Errechnete Schallleistung	db(A)	78		
Schalldruckpegel ^(C0) [10.0 m]	db(A)	46		

SCHALLDATEN FÜR JEDES	Hz	63	125	250	500	1000	2000	4000	8000
Gesamt-Schallleistungspegel	dB	37	58	41	60	72	74	69	64

- (A0) Die angegebenen technischen Daten sind nicht verbindlich. Der Hersteller behält sich das Recht vor, Änderungen jederzeit für die Produktverbesserung durchzuführen.
- (A2) Nach Standard: EN 14511-2022
- (B2) Berechnet gemäß Verordnung (EU) 2013/813 der Kommission: mittlerer Bereich/Grundwasser/Niedrige Temperatur/Variabler Austritt/konst. Volumenstrom Verbraucher/konst. Volumenstrom Quelle
- (B3) Berechnet gemäß Verordnung (EU) 2013/813 der Kommission: mittlerer Bereich/Grundwasser/Mitteltemperatur/Variabler Austritt/konst. Volumenstrom Verbraucher/konst. Volumenstrom Quelle
- (C0) Der Schalldruck wird nach der folgenden Schallausbreitungsmethode berechnet: Halbkugel ISO EN 3744-Quelle
- (CO) Beräknad ljudeffekt kyldrift: enhet som arbetar vid nominell kyleffekt, utan något tillbehör, med inkommande/utgående köldbärartemperatur 10/7°C samt inkommande/utgående värmebärartemperatur för värmeväxlare 40/45 °C. Värden erhållna från mätningar gjorda enligt ISO 3744 standard. Beräknad ljudeffekt är det ända bindande värdet.

Die akustischen Daten beziehen sich auf die oben beschriebenen Standardbedingungen in bevorzugten und reproduzierbaren Betriebsart. Akustische Daten für wassergekühlte Geräte sind KEINE Euovent-zertifizierten Daten.

Alle Daten, mit Ausnahme von "Errechnete Schallleistung", werden nur zu Beispielzwecken angegeben und können nicht für Prognosezwecke oder zur Verifizierung von erzwungenen Grenzwerten verwendet werden.

In Bezug auf die Schallemmisionen verpflichtet sich der Hersteller zur Einhaltung der deklarierten Daten von "Errechnete Schallleistung".

Jegliche Haftung des Herstellers hinsichtlich der Auswirkungen solcher Emissionen in Bezug auf den Standort der Anlage und andere Bedingungen im Zusammenhang mit der Installation des Geräts ist ausgeschlossen.

Die Umgebung und die Installationscharakteristik sowie die Betriebsmodi können die Schallemissionen verändern.

Die gesamte akustische Bewertung in Bezug auf die Standortbedingungen liegt in der Verantwortung des Installateurs.

- (R1) Die angegebene Kältemittelfüllung wird berechnet. Die Kältemittelfüllung kann je nach Version / Zubehör und Produktversion variieren.
- $\hbox{ (P1) Spannungsversorgung zum Betrieb der Einheit. Summe der vollen Leistungsaufnahme der Komponenten. } \\$
- (E0) Elektrische Daten können ohne vorherige Ankündigung geändert werden. Daher ist es notwendig, sich immer auf den elektrischen Schaltplan zu beziehen.

Datenblatt

MicroPlate[™] – Plattenwärmeübertrager (MPHE): XB52

Beschreibung

MicroPlate™-Plattenwärmeübertrager – eine revolutionäre Technologie von Danfoss Durch ihre einzigartige Plattenprägung übertragen die MPHE Wärme effizienter als alle bisherigen Wärmeübertragermodelle.

Vorteile:

- Energie- und Kosteneinsparungen
- Bessere Wärmeübertragung
- Geringerer Druckverlust
- Flexiblerer Aufbau
- · Längere Lebensdauer

Weitere Informationen finden Sie unter: fernwaerme.danfoss.de (MPHE)

XB52 ist ein kupfergelöteter Wärmeübertrager, der für Fernwärme-, Fernkälte- und andere Heizungsanwendungen konzipiert und konfiguriert wurde. Die Wärmeübertrager XB52 sind mit der Plattenprägung M sowie als 1-Kreis- (mit vier Anschlüssen) und 2-Kreis-Ausführung (mit sechs Anschlüssen) erhältlich. Wärmeübertrager können mithilfe der Danfoss-Berechnungssoftware "Hexact" ausgelegt werden, die unter hexact.danfoss.com heruntergeladen werden kann.

Zulassung:

Druckgeräterichtlinie (DGRL).

Bestellung

1-Kreis-Wärmeübertrager XB52 Cu

Abbildung	Plattenanzahl, n	Anschluss	Bestell-Nr
	20		004H4520
	26		004H4521
	30		004H4522
	36		004H4523
	40		004H4524
	50		004H4525
	60	Außengewinde – G 2" –	004H4526
	70 80 90		004H4527
			004H4528
			004H4529
	100		004H4530
	110		004H4531
	120		004H4532
	130		004H4533
	140		004H4534

2-Kreis-Wärmeübertrager XB52 Cu

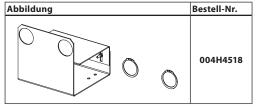
Abbildung	Plattenanzahl, n	Anschluss	Bestell-Nr
	20/20		004H4540
	26/26		004H4541
	30/30		004H4542
	36/36		004H4543
	40/40	Außengewinde G 2"	004H4544
	46/46		004H4545
	50/50		004H4546
	56/56		004H4547
	60/60		004H4548
	66/66		004H4549
	70/70		004H4550

1-Kreis-Wärmeübertrager XB52 Cu+

Abbildung	Plattenanzahl, n	Anschluss	Bestell-Nr
	20		079G1776
	26		079G1777
	30		079G1778
	36		079G1779
	40		079G1780
	50	Außengewinde G 2"	079G1781
	60 70 80 90		079G1782
			079G1783
			079G1784
			079G1785
	100		079G1786
	110		079G1787
	120		079G1788
	130		079G1789
	140		079G1790

2-Kreis-Wärmeübertrager XB52 Cu+

Abbildung	Plattenanzahl, n	Anschluss	Bestell-Nr
	20/20		079G1791
	26/26		079G1792
	30/30		079G1793
	36/36		079G1794
	40/40]	079G1795
	46/46	Außengewinde G 2"	079G1796
	50/50	G 2	079G1797
	56/56		079G1798
	60/60		079G1799
	66/66		079G1800
	70/70		079G1801



Zubehör – Endstücke

Abbil	dung	Beschreibung	Anschluss	Bestell-Nr.1)
			G 2"/28 mm	004B2910
		Weichlot- Anschlussteile	G 2"/35 mm	004B2911
	.0	Aliscillusstelle	G 2"/42 mm	004B2912
	-	Anschweißenden	G 2"/DN 32	004B2907
			G 2"/DN 40	004B2908
			G 2"/DN 50	004B2909

¹⁾ Ein Set umfasst zwei Endstücke mit Überwurfmuttern und Dichtungen.

Zubehör – Konsole

Bestellung (Fortsetzung)

Wärmedämmung für 1-Kreis-Wärmeübertrager XB52M-1

PU-Wärmedämmung (Polyurethan)

Plattenanzahl	Prägungstyp (Plattenanzahl)
20	
26	
30	
36	00484004
40	004B1924
50	
60	
70	
80	
90	004B1935
100	
110	
120	00401050
130	004B1950
140	

Wärmedämmung für 2-Kreis-Wärmeübertrager XB52M-1

PU-Wärmedämmung (Polyurethan)

Plattenanzahl	Prägungstyp (Plattenanzahl)
20/20	
26/26	00404004
30/30	004B1924
36/36	
40/40	
46/46	004B1935
50/50	
56/56	
60/60	00484050
66/66	004B1950
70/70	

Technische Daten

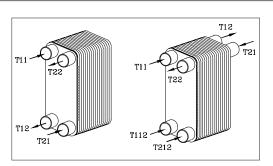
Тур		XB52M
Max. zul. Betriebsdruck	bar	25
Min./Max. Temperatur	°C	-196 / 180
Fördermedium	·	FW: Zirkulationswasser/glykolhaltiges Wasser mit bis zu 50 % Wärmeübertragungsmedlen FK: Ethylenglykol-/Propylenglykol-Wasser-Gemische, Ethanol-Wasser-Lösungen und sonstige geeignete Wärmeübertragungsmedien (Bitten wenden Sie sich an Ihren Danfoss-Vertreter.)
Volumen/Durchflusskanal	1	0,163
Anschlusstyp		Zylindrisches Außengewinde nach DIN ISO 228/1
Anschlussweite		G 2"
Gewicht	l.e.	1-Kreis: 7,39 + 0,27 × n
Gewicht	kg	2-Kreis: 8,11 + 0,27 × n
Werkstoffe	,	
Platte		Rostfreier Edelstahl, EN 1.4404 (AISI 316L)
Lot		Kupfer (Cu) / CoResist (Cu+)

Wärmedämmung

Тур			PU (Polyurethan)
Wärmeleitfähigkei	t, λ	W/mK	0,035
Man Tanananatan	Dauerhaft	°C	130
Max. Temperatur	Kurzzeitig		150
Wandstärke		mm	20

Aufbau und Funktion

T11 - Eingang Primärseite

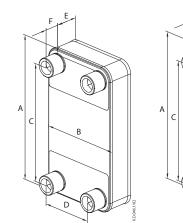

T12 - Ausgang Primärseite

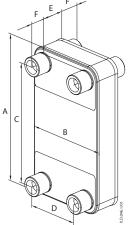
T112 - Zweiter Eingang Primärseite (2-Kreis)

T21 - Eingang Sekundärseite

T22 - Ausgang Sekundärseite

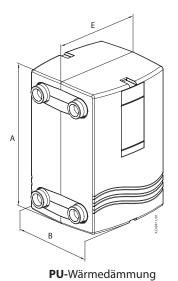
T212 - Zweiter Eingang Sekundärseite (2-Kreis)


2-Kreis-Wärmeübertrager von Danfoss weisen sechs Anschlüsse auf, da sie hauptsächlich zur Erwärmung von Leitungswasser zum Einsatz kommen.


Einer der zusätzlichen Anschlüsse dient der Zirkulation von Warmwasser. Der andere ermöglicht das Sammeln und Entziehen von Wärme aus dem Rücklaufwasser von der Beheizung des Wärmeübertragers. Die Anschlüsse T112 und T212 können blockiert werden, wenn sie nicht verwendet werden.

2 | AI155086472818de-000302

Abmessungen 1)



Тур	Anschluss G 2″ ¹)
Α	466
В	256
С	379
D	170
F	50

Тур	E (mm)
М	15,2 + 1,75* NoP (+0.5/-3 %)

NoP = Plattenanzahl

Wärmedämmung für 1-Kreis-Wärmeübertrager

ixicis waiii	icabei tiagei
Prägungstyp (Plattenanzahl)	Bestell-Nr.
20	
26	
30	004B1924
36	A =512
40	B =320
50	E =197
60	
70	
80	004B1935
90	A =512 B =320
100	E =257
110	004B1950
120	A =512
130	B =320
140	E =337

Wärmedämmung für 2-Kreis-Wärmeübertrager

cis main	in cis marineasernager						
Prägungstyp (Plattenanzahl)	Bestell-Nr.						
20/20	004B1924						
26/26	A =512						
30/30	B =320						
36/36	E =197						
40/40	004B1935						
46/46	A =512 B =320						
50/50	E =257						
56/56	004B1950						
60/60	A =512						
66/66	B =320						
70/70	E =337						

Endstücke

Abbildung	Beschreibung	Anschluss	Bestell-Nr.	a	b	SW 1)
	beschiebung	Alisciliuss	bestell-NI.		mm	
b a		G 2"/28 mm	004B2910	32	45	65
	Weichlot- Anschlussteile	G 2"/35 mm	004B2911	39	45	65
		G 2"/42 mm	004B2912	51	45	65
b l a	Anschweißenden	G 2"/DN 32	004B2907	42.4	45	65
		G 2"/DN 40	004B2908	48.5	45	65
		G 2"/DN 50	004B2909	58	43	65

¹⁾ Überwurfmutter, Schlüsselweiten

¹⁾ Zylindrisches Außengewinde nach DIN ISO 228/1

¹⁾ Abmessungen können ebenfalls mithilfe der Danfoss-Berechnungssoftware "Hexact" ermittelt werden, die unter hexact.danfoss. com heruntergeladen werden kann.

Datenblatt

MicroPlate[™] – Plattenwärmeübertrager XB12

Beschreibung

MicroPlate™-Plattenwärmeübertrager – eine revolutionäre Technologie von Danfoss. Durch ihre einzigartige Plattenprägung übertragen MPHE Wärme effizienter als alle vorangegangenen Modelle.

Vorteile:

- Energie- und Kosteneinsparungen
- bessere Wärmeübertragung
- geringerer Druckverlust
- flexiblerer Aufbau
- · längere Lebensdauer

Weitere Informationen finden Sie unter: fernwaerme.danfoss.de (MPHE)

XB12 ist ein kupfergelöteter Wärmeübertrager, der für Fernwärme-, Fernkälte- und andere Heizungsanwendungen konzipiert und konfiguriert wurde. Wärmeübertrager XB12 sind mit den Plattenprägungen H, M und L sowie als 1-Kreis- (mit vier Anschlüssen) und 2-Kreis- Ausführung (mit sechs Anschlüssen) erhältlich. Wärmeübertrager können mithilfe der Danfoss-Berechnungssoftware "Hexact" ausgelegt werden, die unter hexact.danfoss.com heruntergeladen werden kann.

Zulassung:

Druckgeräte-Richtlinie 97/23/EG (DGRL)

Bestellung

1-Kreis-Wärmeübertrager XB12 mit Anschlussweite G 1 1/4 Zoll 1)

A L L 11 . L	Di attania di la	A	XB12H-1	XB12M-1	XB12L-1
Abbildung	Plattenanzahl, n	Anschluss		Bestell-Nr.	
	10		004H7555	004H7540	004H7525
	16		004H7556	004H7541	004H7526
	20		004H7557	004H7542	004H7527
	26		004H7558	004H7543	004H7528
	30		004H7559	004H7544	004H7529
	(O O) 36		004H7560	004H7545	004H7530
	40	Schraubgewinde G 1 ¼ Zoll	004H7561	004H7546	004H7531
	50		004H7562	004H7547	004H7532
	60		004H7563	004H7548	004H7533
	70		004H7564	004H7549	004H7534
	80		004H7565	004H7550	004H7535
	90		004H7566	004H7551	004H7536
	100		004H7567	004H7552	004H7537
	110 120		004H7568	004H7553	004H7538
			004H7569	-	-
	140		004H7570	-	-

¹⁾ Auch erhältlich mit Anschlussweite 1 Zoll Bitten wenden Sie sich an Ihren Danfoss-Vertreter.

2-Kreis-Wärmeübertrager XB12 mit Anschlussweite G 1 1/4 Zoll 1)

Abbildung	Plattenanzahl²), n	Anschluss	XB12H-1	XB12M-1	XB12L-1
Abbildung	Plattenanzani", n	Anschiuss		Bestell-Nr.	
	20/20		004H7596	004H7584	004H7572
	26/26		004H7597	004H7585	004H7573
	30/30		004H7598	004H7586	004H7574
	36/36		004H7599	004H7587	004H7575
	40/40		004H7600	004H7588	004H7576
	46/46	Schraubgewinde G 1 ¼ Zoll	004H7601	004H7589	004H7577
	50/50	0 1 /4 2011	004H7602	004H7590	004H7578
	56/56		004H7603	004H7591	004H7579
	60/60		004H7604	004H7592	004H7580
	66/66		004H7605	004H7593	004H7581
	70/70		004H7606	004H7594	004H7582

¹⁾ Auch erhältlich mit Anschlussweite 1 Zoll Bitten wenden Sie sich an Ihren Danfoss-Vertreter.

²⁾ 1-Kreis/2-Kreis

Danfoss

Bestellung (Fortsetzung)

Zubehör:

Wärmedämmung für 1-Kreis

EPP-Wärmedämmung (Expandiertes Polypropylen)

D."					
Plattenanzahl	Prägungstyp (Plattenanzahl)				
- iuttenunzum	Н	M	L		
10					
16					
20			004H4201		
26	004H4201	004H4201			
30					
36					
40			004114202		
50			004H4202		
60	004114202	004H4202			
70	004H4202				
80			004H4203		
90		004114303			
100		004H4203	1)		
110	004H4203		"		
120		-	-		
140	1)	_	-		

PU-Wärmedämmung (Polyurethan)

DI 44	Prägungstyp (Plattenanzahl)					
Plattenanzahl	Н	М	L			
10						
16						
20			004114340			
26	004H4210 004H4210	004H4210	004H4210			
30						
36						
40						
50			004H4211			
60			00484211			
70		004H4211				
80	004H4211					
90			004H4212			
100		004114212				
110		004H4212	004H4213			
120	004H4212	-	-			
140		-	-			

Zubehör:

Wärmedämmung für 2-Kreis

EPP-Wärmedämmung (Expandiertes Polypropylen)

Plattenanzahl	Prägungstyp (Plattenanzahl)				
Plattenanzani	Н	М	L		
20/20	004H4201	004H4201			
26/26			004H4202		
30/30	004H4202	004H4202			
36/36	004H4202				
40/40			004H4203		
46/46		004H4203			
50/50	004H4203	004H42U3			
56/56	004H42U3	ONIL	JOM		
60/60			1)		
66/66	1)	1)			
70/70	•,				

PU-Wärmedämmung (Polyurethan)

		,			
Plattenanzahl	Prägungstyp (Plattenanzahl)				
Piattenanzani	Н	М	L		
20/20	004H4210	004H4210			
26/26	004H4210		004H4211		
30/30		004H4211	004H4211		
36/36					
40/40	004H4211				
46/46			004H4212		
® 50/50					
56/56		004H4212 004H	004114212		
60/60			004H4213		
66/66	004H4212		004H4214		
70/70		004H4213	004H4214		

Zubehör – Endstücke

0,5 mm		Beschreibung	Anschluss	Bestell-Nr.1)	
			G 1 ¼ Zoll/28 mm	004B1358	
rrAi	ıAm	Weichlot-	G 1 Zoll/22 mm	004B2906	
ιщ	ıНп	Anschlussteile	G 1 Zoll/18 mm	004B2905	
			G 1 Zoll/15 mm	004B2904	
				G 1 Zoll/DN 20	003H6909
	ı	Anschwei- ßenden	G 1 Zoll/DN 25	004B2903	
LAI	\mathbb{H}		G 1 ¼ Zoll/DN 25	003H6910	
			G 1 ¼ Zoll/DN 32	004B1343	
	1 (11 13) 1 1 1		G 1 ¼ Zoll/G 1 Zoll	004H4205	
		Anschrau- benden	G 1 ¼ Zoll/G 1 ½ Zoll	004H4206	
			G 1 Zoll/ G ¾ Zoll	004B2913	

¹⁾ Ein Set umfasst zwei Endstücke mit Überwurfmuttern und Dichtungen.

Zubehör – **Halterung** 1)

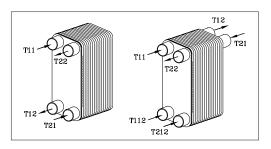
Abbildung			Anschluss	Bestell-Nr.
	A	A	Schraubgewinde G 1 ¼"	004H4200
	U	U	Schraubgewinde G 1"	004B2919

¹⁾ Halterungsset umfasst Halterung und zwei Seegerringe

Aufbau und Funktion

T11 – Eingang Primärseite

T12 – Ausgang Primärseite


T112 – Zweiter Eingang

Primärseite (2-Kreis)

T21 – Eingang Sekundärseite

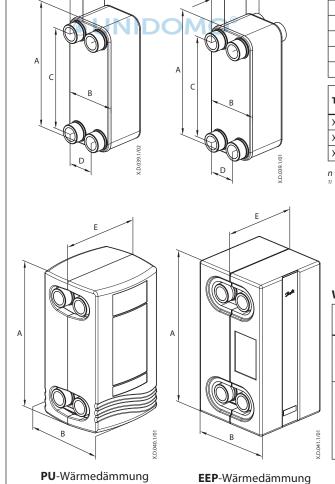
T22 – Ausgang Sekundärseite

T212 – Zweiter Eingang Sekundärseite (2-Kreis)

2-Kreis-Wärmeübertrager von Danfoss weisen sechs Anschlüsse auf, da sie hauptsächlich zur Erwärmung von Leitungswasser zum Einsatz kommen. Einer der zusätzlichen Anschlüsse dient der Zirkulation von Warmwasser. Der andere ermöglicht das Sammeln und Entziehen von Wärme aus dem Rücklaufwasser von der Beheizung des Wärmeübertragers. Die Anschlüsse T112 und T212 können blockiert werden, wenn sie nicht verwendet werden.

¹⁾ EPP-Wärmedämmung ist nicht verfügbar. Bitte bestellen Sie für diese Größe die PU-Wärmedämmung.

¹⁾ EPP-Wärmedämmung ist nicht verfügbar. Bitte bestellen Sie für diese Größe die PU-Wärmedämmung.


Technische Daten

Тур		XB12L-1	XB12M-1	XB12H-1	
Max. zul. Betriebsüberdruck	bar	25			
Min./Max. Temperatur	°C		-10 / 180		
Fördermedium	FW: Zirkulationswasser/glykolhaltiges Wasser mit bis zu 50 % Gly FK: Ethylenglykol-/Propylenglykol-Wasser-Gemische, Ethanol-Wasser-Lösungen und sonstige geeignete Wärmeübertragu (Bitten wenden Sie sich an Ihren Danfoss-Vertreter.)			nische, bertragungsmedien.	
Volumen/Durchflusskanal	1	0,042	0,032	0,027	
Anschlusstyp		Zylindrisches Außengewinde nach DIN ISO 228/1			
Anschlussweite		G 1 ¼ Zoll oder G 1 Zoll			
Carriaba	l.e.	1-Kreis: Anschluss G 1 ¼ Zoll/G 1 Zoll: 1,53 + 0,076 * n/1,36 + 0,076 * n			
Gewicht kg		2-Kreis: Anschluss G 1 ¼ Zoll/G 1 Zoll: 1,77 + 0,076 * n/1,52 + 0,076 * n			
Werkstoffe		-			
Platte		Rostfreier Edelstahl, EN 1.4404 (AISI 316L)			
Lot		Kupfer			

Wärmedämmung

Тур			PU (Polyurethan)	EPP (Expandiertes Polypropylen)	
Wärmeleitfähigkeit, λ		W/mK	0,035	0,038	
Mari Tamananatri	Andauernd	۰,	130	110	
Max. Temperatur	Kurzzeitige Spitze	ا ا	160		
Wandstärke		mm	20	30	

Abmessungen 1)

Anschluss Тур G 1 1/4 Zoll 1) G 1 Zoll 1) 289 Α В 118 c 234 235 D 63 65 F 25 20

Тур	E (mm)		
XB12L	n × 1,75 + 10 (+0,5/-3 %)		
XB12M	n × 1,40 + 10 (+0,5/-3 %)		
XB12H	n × 1,2 + 10 (+0,5/-3 %)		

Wärmedämmung

warmedammung							
Тур	Α	В	E	Bestell-Nr.			
		mm	Destell-Nr.				
EPP	352	185	130	004H4201			
			180	004H4202			
			235	004H4203			
PU	336	176	135	004H4210			
		184	197	004H4211			
		185	257	004H4212			
		188	282	004H4213			
		200	337	004H4214			

n = Plattenanzahl ¹⁾ Zylindrisches Außengewinde nach DIN ISO 228/1

¹⁾ Abmessungen können ebenfalls mithilfe der Danfoss-Berechnungssoftware "Hexact" ermittelt werden, die unter hexact.danfoss.com heruntergeladen werden kann.